ACI 238.1R 08:2008 Edition
$48.48
238.1R-08 Report on Measurements of Workability and Rheology of Fresh Concrete
Published By | Publication Date | Number of Pages |
ACI | 2008 | 74 |
This report provides a comprehensive view of workability of fresh concrete and a critical review of the tests available to measure workability and rheological performance of fresh concrete. The report discusses the factors affecting the performance of fresh concrete and provides a better understanding of the issues related to the design of workable concrete, from no flow (zero-slump) to flow like a liquid (self-consolidating concrete). Keywords: rheological measurements; rheology; workability; workability measurements.
PDF Catalog
PDF Pages | PDF Title |
---|---|
3 | CONTENTS |
4 | CHAPTER 1— INTRODUCTION CHAPTER 2— RHEOLOGICAL TERMS RELATED TO CONCRETE 2.1— Notation 2.2—Definitions |
5 | 2.3—Shear flow curves 2.3.1 Rheological models for materials without yield stress 2.3.2 Rheological models for materials with non-zero yield stress (τ0 ≠ 0) |
6 | 2.3.3 Models predicting rheological properties of suspensions CHAPTER 3— TEST METHODS 3.1— Introduction 3.2—Principles of measurements |
8 | 3.3—Description of existing test methods 3.3.1 Workability tests for concrete 3.3.1.1 Confined flow tests |
9 | 3.3.1.1.1 Compaction factor test (or consolidating factor test) 3.3.1.1.2 Free orifice test (Orimet test) |
10 | 3.3.1.1.3 K-slump tester |
11 | 3.3.1.2 Free flow tests 3.3.1.2.1 Cone penetration test |
12 | 3.3.1.2.2 Delivery-chute depth meter 3.3.1.2.3 Delivery-chute torque meter |
13 | 3.3.1.2.4 Flow trough test 3.3.1.2.5 Kelly ball test 3.3.1.2.6 Modified slump test |
14 | 3.3.1.2.7 Moving sphere viscometer |
15 | 3.3.1.2.8 Ring penetration test 3.3.1.2.9 SLump Rate Machine (SLRM) 3.3.1.2.10 Slump test |
17 | 3.3.1.2.11 Surface settlement test 3.3.1.3 Vibration tests 3.3.1.3.1 Angles flow box test |
18 | 3.3.1.3.2 Compaction test (Walz test, compaction index test, degree of compaction test) 3.3.1.3.3 Flow table test (DIN flow table) |
19 | 3.3.1.3.4 Inverted slump cone test |
20 | 3.3.1.3.5 LCL flow test 3.3.1.3.6 Powers remolding test |
21 | 3.3.1.3.7 Settlement column segregation test |
22 | 3.3.1.3.8 Thaulow tester 3.3.1.3.9 Vebe consistometer |
23 | 3.3.1.3.10 Vertical pipe apparatus 3.3.1.3.11 Vibrating slope apparatus |
24 | 3.3.1.3.12 Vibratory flow meter |
25 | 3.3.1.3.13 Vibropenetrator 3.3.1.3.14 Wigmore consistometer 3.3.1.4 Rotational rheometers |
26 | 3.3.1.4.1 Bertta apparatus 3.3.1.4.2 BML viscometer |
27 | 3.3.1.4.3 BTRHEOM rheometer |
28 | 3.3.1.4.4 CEMAGREF-IMG 3.3.1.4.5 Concrete truck mixer as rheometer 3.3.1.4.6 Consolis RheoMixer |
29 | 3.3.1.4.7 CONVI Visco-Probe 3.3.1.4.8 FHPCM |
30 | 3.3.1.4.9 Fresh concrete tester 101 (FCT 101) 3.3.1.4.10 ICAR rheometer |
31 | 3.3.1.4.11 IBB rheometer 3.3.1.4.12 Mixer devices |
32 | 3.3.1.4.13 Powers and Wiler plastometer 3.3.1.4.14 Rheometer-4SCC |
33 | 3.3.1.4.15 Soil direct shear test |
34 | 3.3.1.4.16 Tattersall two-point device |
35 | 3.3.1.5 Tests for very high yield-stress concrete 3.3.1.5.1 Intensive compaction test 3.3.1.5.2 Kango hammer test |
36 | 3.3.1.5.3 Proctor test 3.3.1.6 Other test methods 3.3.1.6.1 Multiple single-point tests 3.3.1.6.2 Soil triaxial test 3.3.1.6.3 System and method for controlling concrete production |
37 | 3.3.1.6.4 Trowel test 3.3.2 Test methods for SCC 3.3.2.1 Column-segregation test |
38 | 3.3.2.2 Fill box test (simulated filling test, filling capacity box, Kajima test) 3.3.2.3 J-ring test |
39 | 3.3.2.4 L-box test 3.3.2.5 Penetration test for segregation |
40 | 3.3.2.6 Simulated soffit test 3.3.2.7 Slump flow test 3.3.2.8 U-box test |
41 | 3.3.2.9 V-funnel test |
42 | 3.3.2.10 Wet sieving stability test (GTM screen stability test) 3.3.3 Workability tests for pastes and grouts 3.3.3.1 Flow cone and marsh cone tests |
43 | 3.3.3.2 Lombardi plate (plate cohesion meter) 3.3.3.3 Mini-flow test 3.3.3.4 Mini-slump test |
44 | 3.3.3.5 Turning tube viscometer 3.3.3.6 Vicat needle test 3.3.3.7 ViscoCorder |
45 | 3.3.3.8 Wuerpel device 3.4—Criteria for evaluating test methods |
46 | CHAPTER 4— FACTORS AFFECTING WORKABILITY OF CONCRETE 4.1—Introduction |
47 | 4.2—Effects of cement 4.2.1 Cement content 4.2.2 Cement characteristics 4.3—Effects of water content 4.4—Effects of aggregates 4.4.1 Aggregate volume fraction 4.4.2 Sand-aggregate ratio 4.4.3 Shape and texture |
48 | 4.4.4 Gradation 4.4.5 Microfines content 4.5—Effects of chemical admixtures 4.5.1 Water-reducing admixtures |
49 | 4.5.2 Air-entraining admixtures |
50 | 4.5.3 Viscosity-modifying admixtures 4.5.4 Set-accelerating and set-retarding admixtures 4.5.4.1 Set-retarding admixtures |
51 | 4.5.4.2 Set-accelerating admixtures 4.6—Effects of supplementary cementitious materials 4.6.1 Fly ash 4.6.2 Silica fume |
52 | 4.6.3 Slag cement 4.6.4 Effects of fibers 4.7—Effect of mixing procedure 4.8—Effects of temperature and time 4.8.1 Effect of temperature |
53 | 4.8.2 Coupled effect of temperature and elapsed time |
54 | CHAPTER 5— EXAMPLES OF USING WORKABILITY TEST METHODS 5.1—Use of gyratory tester to measure workability of no- slump concrete 5.1.1 Background |
55 | 5.1.2 Lab tests 5.1.2.1 Experience from using tester 5.1.2.2 Density measurement 5.1.2.3 Shear force measurement 5.1.2.4 User characteristics 5.1.3 Repeatability |
56 | 5.1.4 Factors affecting workability |
57 | 5.1.4.1 Applications of IC tester 5.1.4.2 Reproducibility of results 5.1.4.3 Comparison of fresh concrete mixtures 5.1.4.4 Can lab results be applied to real life? 5.1.5 Use of IC tester in field |
58 | 5.2—Using rheological measurements to solve problem with flooring grouts 5.2.1 Introduction 5.2.2 Experimental methods 5.2.2.1 Materials 5.2.2.2 Rheological tests: rheometer 5.2.2.3 Testing cycle |
59 | 5.2.2.4 Effect of mixing speed and time on rheological properties 5.2.2.5 Standing time of cement paste 5.2.2.6 Mixture proportions |
60 | 5.2.3 Results 5.2.4 Discussion |
61 | 5.2.5 Conclusions 5.3—Measuring batch-to-batch consistency of self- consolidating concrete 5.3.1 Sample preparation and methods 5.3.2 Results 5.3.3 Conclusion 5.4—Troubleshooting self-consolidating concrete mixtures 5.4.1 Introduction |
62 | 5.4.2 Materials 5.4.3 Test methods |
63 | 5.4.4 Concrete mixtures 5.4.5 Analysis of concrete mixture proportions |
64 | 5.4.5 Analysis of rheological behavior and thixotropy |
65 | 5.4.6 Conclusions 5.5—Use of rheological approach to optimize cement- based grout for underwater crack injection of damaged bridge |
66 | CHAPTER 6— REFERENCES 6.1—Referenced standards and reports |
67 | 6.2—Cited references |