{"id":121590,"date":"2024-10-19T04:28:46","date_gmt":"2024-10-19T04:28:46","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/2009-ashrae-handbook-fundamentals-toc\/"},"modified":"2024-10-24T22:56:14","modified_gmt":"2024-10-24T22:56:14","slug":"2009-ashrae-handbook-fundamentals-toc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ashrae\/2009-ashrae-handbook-fundamentals-toc\/","title":{"rendered":"2009 ASHRAE Handbook Fundamentals TOC"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nip09FrontCover <\/td>\n<\/tr>\n
2<\/td>\n09FrontMatter_I-P <\/td>\n<\/tr>\n
3<\/td>\nDedicated To The Advancement Of
The Profession And Its Allied Industries
DISCLAIMER <\/td>\n<\/tr>\n
10<\/td>\nip09Inside4VolTOC
2009 FUNDAMENTALS
2008 HVAC SYSTEMS AND EQUIPMENT <\/td>\n<\/tr>\n
11<\/td>\n2007 HVAC APPLICATIONS
2006 REFRIGERATION <\/td>\n<\/tr>\n
13<\/td>\nip09Spine <\/td>\n<\/tr>\n
14<\/td>\nI-P_F09_Ch01
Composition of Dry and Moist Air
U.S. Standard Atmosphere <\/td>\n<\/tr>\n
15<\/td>\nThermodynamic Properties of Moist Air
Thermodynamic Properties of Water at Saturation
Humidity Parameters
Basic Parameters <\/td>\n<\/tr>\n
25<\/td>\nHumidity Parameters Involving Saturation
Perfect Gas Relationships for Dry and Moist Air <\/td>\n<\/tr>\n
26<\/td>\nThermodynamic Wet-Bulb and Dew-Point Temperature
Numerical Calculation of Moist Air Properties <\/td>\n<\/tr>\n
27<\/td>\nMoist Air Property Tables for Standard Pressure
Psychrometric Charts <\/td>\n<\/tr>\n
29<\/td>\nTypical Air-Conditioning Processes
Moist Air Sensible Heating or Cooling
Moist Air Cooling and Dehumidification
Adiabatic Mixing of Two Moist Airstreams <\/td>\n<\/tr>\n
30<\/td>\nAdiabatic Mixing of Water Injected into Moist Air
Schematic Showing Injection of Water into Moist Air <\/td>\n<\/tr>\n
31<\/td>\nSpace Heat Absorption and Moist Air Moisture Gains <\/td>\n<\/tr>\n
32<\/td>\nTransport Properties of Moist Air
Symbols <\/td>\n<\/tr>\n
33<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
34<\/td>\nI-P_F09_Ch02
Thermodynamics
Stored Energy
Energy in Transition <\/td>\n<\/tr>\n
35<\/td>\nFirst Law of Thermodynamics
Second Law of Thermodynamics <\/td>\n<\/tr>\n
36<\/td>\nThermodynamic Analysis of Refrigeration Cycles
Equations of State <\/td>\n<\/tr>\n
37<\/td>\nCalculating Thermodynamic Properties <\/td>\n<\/tr>\n
38<\/td>\nPhase Equilibria for Multicomponent Systems <\/td>\n<\/tr>\n
39<\/td>\nCompression Refrigeration Cycles
Carnot Cycle <\/td>\n<\/tr>\n
40<\/td>\nTheoretical Single-Stage Cycle Using a Pure Refrigerant or Azeotropic Mixture <\/td>\n<\/tr>\n
41<\/td>\nLorenz Refrigeration Cycle <\/td>\n<\/tr>\n
42<\/td>\nTheoretical Single-Stage Cycle Using Zeotropic Refrigerant Mixture <\/td>\n<\/tr>\n
43<\/td>\nMultistage Vapor Compression Refrigeration Cycles <\/td>\n<\/tr>\n
44<\/td>\nActual Refrigeration Systems <\/td>\n<\/tr>\n
46<\/td>\nAbsorption Refrigeration Cycles
Ideal Thermal Cycle
Working Fluid Phase Change Constraints <\/td>\n<\/tr>\n
47<\/td>\nTemperature Glide
Working Fluids <\/td>\n<\/tr>\n
48<\/td>\nAbsorption Cycle Representations
Conceptualizing the Cycle <\/td>\n<\/tr>\n
49<\/td>\nAbsorption Cycle Modeling
Analysis and Performance Simulation <\/td>\n<\/tr>\n
50<\/td>\nDouble-Effect Cycle <\/td>\n<\/tr>\n
51<\/td>\nAmmonia\/Water Absorption Cycles <\/td>\n<\/tr>\n
52<\/td>\nSymbols <\/td>\n<\/tr>\n
53<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
54<\/td>\nI-P_F09_Ch03
Fluid Properties
Density
Viscosity <\/td>\n<\/tr>\n
55<\/td>\nBasic Relations of Fluid Dynamics
Continuity in a Pipe or Duct
Bernoulli Equation and Pressure Variation in Flow Direction <\/td>\n<\/tr>\n
56<\/td>\nLaminar Flow
Turbulence
Basic Flow Processes
Wall Friction <\/td>\n<\/tr>\n
57<\/td>\nBoundary Layer
Flow Patterns with Separation <\/td>\n<\/tr>\n
58<\/td>\nDrag Forces on Bodies or Struts
Nonisothermal Effects <\/td>\n<\/tr>\n
59<\/td>\nFlow Analysis
Generalized Bernoulli Equation
Conduit Friction <\/td>\n<\/tr>\n
61<\/td>\nValve, Fitting, and Transition Losses <\/td>\n<\/tr>\n
62<\/td>\nControl Valve Characterization for Liquids
Incompressible Flow in Systems <\/td>\n<\/tr>\n
63<\/td>\nFlow Measurement <\/td>\n<\/tr>\n
64<\/td>\nUnsteady Flow <\/td>\n<\/tr>\n
65<\/td>\nCompressibility <\/td>\n<\/tr>\n
66<\/td>\nCompressible Conduit Flow
Cavitation
Noise in Fluid Flow <\/td>\n<\/tr>\n
67<\/td>\nSymbols
References
Bibliography <\/td>\n<\/tr>\n
68<\/td>\nI-P_F09_Ch04
Heat Transfer Processes
Conduction
Convection <\/td>\n<\/tr>\n
69<\/td>\nRadiation
Combined Radiation and Convection
Contact or Interface Resistance
Heat Flux <\/td>\n<\/tr>\n
70<\/td>\nOverall Resistance and Heat Transfer Coefficient
Thermal Conduction
One-Dimensional Steady-State Conduction <\/td>\n<\/tr>\n
71<\/td>\nTwo- and Three-Dimensional Steady-State Conduction: Shape Factors
Extended Surfaces <\/td>\n<\/tr>\n
75<\/td>\nTransient Conduction <\/td>\n<\/tr>\n
78<\/td>\nThermal Radiation
Blackbody Radiation <\/td>\n<\/tr>\n
79<\/td>\nActual Radiation <\/td>\n<\/tr>\n
80<\/td>\nAngle Factor <\/td>\n<\/tr>\n
81<\/td>\nRadiant Exchange Between Opaque Surfaces <\/td>\n<\/tr>\n
83<\/td>\nRadiation in Gases
Thermal Convection
Forced Convection <\/td>\n<\/tr>\n
88<\/td>\nHeat Exchangers
Mean Temperature Difference Analysis
NTU-Effectiveness (e) Analysis <\/td>\n<\/tr>\n
90<\/td>\nPlate Heat Exchangers
Heat Exchanger Transients
Heat Transfer Augmentation <\/td>\n<\/tr>\n
91<\/td>\nPassive Techniques <\/td>\n<\/tr>\n
94<\/td>\nActive Techniques <\/td>\n<\/tr>\n
97<\/td>\nSymbols <\/td>\n<\/tr>\n
98<\/td>\nGreek
Subscripts
References <\/td>\n<\/tr>\n
100<\/td>\nBibliography
Fins <\/td>\n<\/tr>\n
101<\/td>\nHeat Exchangers
Heat Transfer, General <\/td>\n<\/tr>\n
102<\/td>\nI-P_F09_Ch05
Boiling
Boiling and Pool Boiling in Natural Convection Systems <\/td>\n<\/tr>\n
105<\/td>\nMaximum Heat Flux and Film Boiling
Flooded Evaporators
Forced-Convection Evaporation in Tubes <\/td>\n<\/tr>\n
108<\/td>\nBoiling in Plate Heat Exchangers <\/td>\n<\/tr>\n
109<\/td>\nCondensing
Condensation on Inside Surface of Horizontal Tubes <\/td>\n<\/tr>\n
111<\/td>\nNoncondensable Gases <\/td>\n<\/tr>\n
112<\/td>\nOther Impurities
Pressure Drop
Friedel Correlation <\/td>\n<\/tr>\n
113<\/td>\nLockhart and Martinelli Correlation
Gr\u00f6nnerud Correlation
M\u00fcller-Steinhagen and Heck Correlation <\/td>\n<\/tr>\n
114<\/td>\nRecommendations
Pressure Drop in Plate Heat Exchangers <\/td>\n<\/tr>\n
115<\/td>\nEnhanced Surfaces
Symbols <\/td>\n<\/tr>\n
116<\/td>\nReferences <\/td>\n<\/tr>\n
120<\/td>\nI-P_F09_Ch06
Molecular Diffusion
Fick\u2019s Law
Fick\u2019s Law for Dilute Mixtures <\/td>\n<\/tr>\n
121<\/td>\nFick\u2019s Law for Mass Diffusion Through Solids or Stagnant Fluids (Stationary Media)
Fick\u2019s Law for Ideal Gases with Negligible Temperature Gradient
Diffusion Coefficient <\/td>\n<\/tr>\n
122<\/td>\nDiffusion of One Gas Through a Second Stagnant Gas <\/td>\n<\/tr>\n
123<\/td>\nEquimolar Counterdiffusion
Molecular Diffusion in Liquids and Solids <\/td>\n<\/tr>\n
124<\/td>\nConvection of Mass
Mass Transfer Coefficient
Analogy Between Convective Heat and Mass Transfer <\/td>\n<\/tr>\n
128<\/td>\nLewis Relation
Simultaneous Heat and Mass Transfer Between Water-Wetted Surfaces and Air
Enthalpy Potential <\/td>\n<\/tr>\n
129<\/td>\nBasic Equations for Direct-Contact Equipment <\/td>\n<\/tr>\n
130<\/td>\nAir Washers <\/td>\n<\/tr>\n
131<\/td>\nCooling Towers
Cooling and Dehumidifying Coils <\/td>\n<\/tr>\n
132<\/td>\nSymbols <\/td>\n<\/tr>\n
133<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
134<\/td>\nI-P_F09_Ch07
Terminology <\/td>\n<\/tr>\n
135<\/td>\nTypes of Control Action
Two-Position Action
Modulating Control <\/td>\n<\/tr>\n
136<\/td>\nCombinations of Two-Position and Modulating <\/td>\n<\/tr>\n
137<\/td>\nClassification by Energy Source
Computers for Automatic Control
Control Components
Controlled Devices
Valves <\/td>\n<\/tr>\n
139<\/td>\nDampers <\/td>\n<\/tr>\n
141<\/td>\nPositive (Pilot) Positioners
Sensors <\/td>\n<\/tr>\n
142<\/td>\nTemperature Sensors
Humidity Sensors
Pressure Transmitters and Transducers <\/td>\n<\/tr>\n
143<\/td>\nFlow Rate Sensors
Indoor Air Quality Sensors
Lighting Level Sensors
Power Sensing and Transmission
Controllers
Digital Controllers <\/td>\n<\/tr>\n
144<\/td>\nElectric\/Electronic Controllers
Pneumatic Receiver-Controllers
Thermostats
Auxiliary Control Devices <\/td>\n<\/tr>\n
147<\/td>\nCommunication Networks for Building Automation Systems
Communication Protocols
OSI Network Model
Network Structure <\/td>\n<\/tr>\n
148<\/td>\nConnections Between BAS Networks and Other Computer Networks <\/td>\n<\/tr>\n
149<\/td>\nTransmission Media <\/td>\n<\/tr>\n
150<\/td>\nSpecifying BAS Networks
Specification Method
Communication Tasks
Approaches to Interoperability
Standard Protocols <\/td>\n<\/tr>\n
151<\/td>\nGateways and Interfaces
Specifying DDC Systems
Commissioning
Tuning
Tuning Proportional, PI, and PID Controllers <\/td>\n<\/tr>\n
152<\/td>\nTuning Digital Controllers <\/td>\n<\/tr>\n
153<\/td>\nComputer Modeling of Control Systems
Codes and Standards
References
Bibliography <\/td>\n<\/tr>\n
154<\/td>\nI-P_F09_Ch08
Acoustical Design Objective
Characteristics of Sound
Levels
Sound Pressure and Sound Pressure Level <\/td>\n<\/tr>\n
155<\/td>\nFrequency
Speed
Wavelength
Sound Power and Sound Power Level
Sound Intensity and Sound Intensity Level <\/td>\n<\/tr>\n
156<\/td>\nCombining Sound Levels
Resonances
Absorption and Reflection of Sound <\/td>\n<\/tr>\n
157<\/td>\nRoom Acoustics
Acoustic Impedance
Measuring Sound
Instrumentation
Time Averaging
Spectra and Analysis Bandwidths <\/td>\n<\/tr>\n
158<\/td>\nSound Measurement Basics <\/td>\n<\/tr>\n
159<\/td>\nMeasurement of Room Sound Pressure Level <\/td>\n<\/tr>\n
160<\/td>\nMeasurement of Acoustic Intensity
Determining Sound Power
Free-Field Method
Reverberation Room Method <\/td>\n<\/tr>\n
161<\/td>\nProgressive Wave (In-Duct) Method
Sound Intensity Method
Measurement Bandwidths for Sound Power
Converting from Sound Power to Sound Pressure <\/td>\n<\/tr>\n
162<\/td>\nSound Transmission Paths
Spreading Losses
Direct Versus Reverberant Fields
Airborne Transmission
Ductborne Transmission
Room-to-Room Transmission <\/td>\n<\/tr>\n
163<\/td>\nStructureborne Transmission
Flanking Transmission
Typical Sources of Sound
Source Strength
Directivity of Sources
Acoustic Nearfield
Controlling Sound
Terminology <\/td>\n<\/tr>\n
164<\/td>\nEnclosures and Barriers
Partitions <\/td>\n<\/tr>\n
165<\/td>\nSound Attenuation in Ducts and Plenums <\/td>\n<\/tr>\n
166<\/td>\nStandards for Testing Duct Silencers
System Effects
Human Response to Sound
Noise <\/td>\n<\/tr>\n
167<\/td>\nPredicting Human Response to Sound
Sound Quality
Loudness <\/td>\n<\/tr>\n
168<\/td>\nAcceptable Frequency Spectrum
Sound Rating Systems and Acoustical Design Goals
A-Weighted Sound Level (dBA) <\/td>\n<\/tr>\n
169<\/td>\nNoise Criteria (NC) Method
Balanced Noise Criteria (NCB) Method <\/td>\n<\/tr>\n
170<\/td>\nRoom Criterion (RC) Method
Room Criteria (RC) Mark II Method
Procedure for Determining the RC Mark II Rating for a System <\/td>\n<\/tr>\n
171<\/td>\nEstimating Occupant Satisfaction Using QAI
Criteria Selection Guidelines
Fundamentals of Vibration
Single-Degree-of-Freedom Model <\/td>\n<\/tr>\n
172<\/td>\nMechanical Impedance
Natural Frequency <\/td>\n<\/tr>\n
173<\/td>\nPractical Application for Nonrigid Foundations
Vibration Measurement Basics <\/td>\n<\/tr>\n
174<\/td>\nSymbols
References <\/td>\n<\/tr>\n
175<\/td>\nBibliography <\/td>\n<\/tr>\n
176<\/td>\nI-P_F09_Ch09
Human Thermoregulation <\/td>\n<\/tr>\n
177<\/td>\nEnergy Balance
Thermal Exchanges with the Environment <\/td>\n<\/tr>\n
178<\/td>\nBody Surface Area
Sensible Heat Loss from Skin
Evaporative Heat Loss from Skin <\/td>\n<\/tr>\n
179<\/td>\nRespiratory Losses
Alternative Formulations <\/td>\n<\/tr>\n
180<\/td>\nTotal Skin Heat Loss <\/td>\n<\/tr>\n
181<\/td>\nEngineering Data and Measurements
Metabolic Rate and Mechanical Efficiency <\/td>\n<\/tr>\n
182<\/td>\nHeat Transfer Coefficients <\/td>\n<\/tr>\n
183<\/td>\nClothing Insulation and Permeation Efficiency <\/td>\n<\/tr>\n
185<\/td>\nTotal Evaporative Heat Loss
Environmental Parameters <\/td>\n<\/tr>\n
186<\/td>\nConditions for Thermal Comfort <\/td>\n<\/tr>\n
187<\/td>\nThermal Complaints <\/td>\n<\/tr>\n
188<\/td>\nThermal Comfort and Task Performance <\/td>\n<\/tr>\n
189<\/td>\nThermal Nonuniform Conditions and Local Discomfort
Asymmetric Thermal Radiation
Draft <\/td>\n<\/tr>\n
190<\/td>\nVertical Air Temperature Difference
Warm or Cold Floors <\/td>\n<\/tr>\n
191<\/td>\nSecondary Factors Affecting Comfort
Day-to-Day Variations
Age
Adaptation
Sex
Seasonal and Circadian Rhythms
Prediction of Thermal Comfort
Steady-State Energy Balance <\/td>\n<\/tr>\n
193<\/td>\nTwo-Node Model <\/td>\n<\/tr>\n
194<\/td>\nAdaptive Models
Zones of Comfort and Discomfort <\/td>\n<\/tr>\n
195<\/td>\nEnvironmental Indices
Effective Temperature <\/td>\n<\/tr>\n
196<\/td>\nHumid Operative Temperature
Heat Stress Index
Index of Skin Wettedness
Wet-Bulb Globe Temperature <\/td>\n<\/tr>\n
197<\/td>\nWet-Globe Temperature
Wind Chill Index <\/td>\n<\/tr>\n
198<\/td>\nSpecial Environments
Infrared Heating <\/td>\n<\/tr>\n
199<\/td>\nComfort Equations for Radiant Heating
Hot and Humid Environments <\/td>\n<\/tr>\n
200<\/td>\nExtremely Cold Environments <\/td>\n<\/tr>\n
202<\/td>\nSymbols
Codes and Standards <\/td>\n<\/tr>\n
203<\/td>\nReferences <\/td>\n<\/tr>\n
205<\/td>\nBibliography <\/td>\n<\/tr>\n
206<\/td>\nI-P_F09_Ch10
Background <\/td>\n<\/tr>\n
207<\/td>\nDescriptions of Selected Health Sciences
Epidemiology and Biostatistics <\/td>\n<\/tr>\n
208<\/td>\nIndustrial Hygiene
Microbiology and Mycology
Toxicology
Hazard Recognition, Analysis, and Control
Hazard Control <\/td>\n<\/tr>\n
209<\/td>\nAirborne Contaminants
Particles
Industrial Environments <\/td>\n<\/tr>\n
210<\/td>\nSynthetic Vitreous Fibers
Combustion Nuclei <\/td>\n<\/tr>\n
211<\/td>\nParticles in Nonindustrial Environments
Bioaerosols <\/td>\n<\/tr>\n
213<\/td>\nGaseous Contaminants <\/td>\n<\/tr>\n
214<\/td>\nIndustrial Environments
Nonindustrial Environments <\/td>\n<\/tr>\n
217<\/td>\nPhysical Agents
Thermal Environment
Range of Healthy Living Conditions
Hypothermia <\/td>\n<\/tr>\n
218<\/td>\nHyperthermia
Seasonal Patterns
Increased Deaths in Heat Waves <\/td>\n<\/tr>\n
219<\/td>\nEffects of Thermal Environment on Specific Diseases
Injury from Hot and Cold Surfaces
Electrical Hazards
Mechanical Energies
Vibration <\/td>\n<\/tr>\n
220<\/td>\nStandard Limits <\/td>\n<\/tr>\n
221<\/td>\nSound and Noise
Electromagnetic Radiation <\/td>\n<\/tr>\n
222<\/td>\nIonizing Radiation
Nonionizing Radiation <\/td>\n<\/tr>\n
223<\/td>\nErgonomics <\/td>\n<\/tr>\n
224<\/td>\nReferences <\/td>\n<\/tr>\n
228<\/td>\nI-P_F09_Ch11
Classes of Air Contaminants <\/td>\n<\/tr>\n
229<\/td>\nParticulate Contaminants
Particulate Matter
Solid Particles
Liquid Particles
Complex Particles
Sizes of Airborne Particles <\/td>\n<\/tr>\n
231<\/td>\nParticle Size Distribution
Units of Measurement
Measurement of Airborne Particles <\/td>\n<\/tr>\n
233<\/td>\nTypical Particle Levels
Bioaerosols
Units of Measurement <\/td>\n<\/tr>\n
234<\/td>\nSampling
Control <\/td>\n<\/tr>\n
235<\/td>\nGaseous Contaminants
Harmful Effects of Gaseous Contaminants <\/td>\n<\/tr>\n
237<\/td>\nUnits of Measurement
Measurement of Gaseous Contaminants <\/td>\n<\/tr>\n
238<\/td>\nVolatile Organic Compounds <\/td>\n<\/tr>\n
240<\/td>\nControlling Exposure to VOCs <\/td>\n<\/tr>\n
241<\/td>\nInorganic Gases
Controlling Exposures to Inorganic Gases <\/td>\n<\/tr>\n
242<\/td>\nAir Contaminants by Source
Outdoor Air Contaminants <\/td>\n<\/tr>\n
243<\/td>\nIndustrial Air Contaminants
Nonindustrial Indoor Air Contaminants <\/td>\n<\/tr>\n
244<\/td>\nFlammable Gases and Vapors <\/td>\n<\/tr>\n
245<\/td>\nCombustible Dusts <\/td>\n<\/tr>\n
246<\/td>\nRadioactive Air Contaminants
Radon <\/td>\n<\/tr>\n
247<\/td>\nSoil Gases
References <\/td>\n<\/tr>\n
249<\/td>\nBibliography <\/td>\n<\/tr>\n
250<\/td>\nI-P_F09_Ch12
Odor Sources
Sense of Smell
Olfactory Stimuli <\/td>\n<\/tr>\n
251<\/td>\nAnatomy and Physiology
Olfactory Acuity
Factors Affecting Odor Perception
Humidity and Temperature
Sorption and Release of Odors
Emotional Responses to Odors <\/td>\n<\/tr>\n
252<\/td>\nOdor Sensation Attributes
Detectability
Intensity <\/td>\n<\/tr>\n
253<\/td>\nCharacter <\/td>\n<\/tr>\n
254<\/td>\nHedonics
Dilution of Odors by Ventilation
Odor Concentration
Analytical Measurement
Odor Units <\/td>\n<\/tr>\n
255<\/td>\nOlf Units
References <\/td>\n<\/tr>\n
257<\/td>\nBibliography <\/td>\n<\/tr>\n
258<\/td>\nI-P_F09_Ch13
Computational Fluid Dynamics
Mathematical and Numerical Background <\/td>\n<\/tr>\n
260<\/td>\nReynolds-Averaged Navier-Stokes (RANS) Approaches
Large Eddy Simulation (LES) <\/td>\n<\/tr>\n
261<\/td>\nDirection Numerical Simulation (DNS)
Meshing for Computational Fluid Dynamics
Structured Grids <\/td>\n<\/tr>\n
262<\/td>\nUnstructured Grids
Grid Quality
Immersed Boundary Grid Generation
Grid Independence <\/td>\n<\/tr>\n
263<\/td>\nBoundary Conditions for Computational Fluid Dynamics
Inlet Boundary Conditions <\/td>\n<\/tr>\n
264<\/td>\nOutlet Boundary Conditions
Wall\/Surface Boundary Conditions <\/td>\n<\/tr>\n
265<\/td>\nSymmetry Surface Boundary Conditions <\/td>\n<\/tr>\n
266<\/td>\nFixed Sources and Sinks
Modeling Considerations
CFD Modeling Approaches
Planning
Dimensional Accuracy and Faithfulness to Details
CFD Simulation Steps
Verification, Validation, and Reporting Results <\/td>\n<\/tr>\n
267<\/td>\nVerification <\/td>\n<\/tr>\n
269<\/td>\nValidation <\/td>\n<\/tr>\n
270<\/td>\nReporting CFD Results <\/td>\n<\/tr>\n
271<\/td>\nMultizone Network Airflow and Contaminant Transport Modeling
Multizone Airflow Modeling
Theory <\/td>\n<\/tr>\n
272<\/td>\nSolution Techniques <\/td>\n<\/tr>\n
273<\/td>\nContaminant Transport Modeling
Fundamentals
Solution Techniques
Multizone Modeling Approaches
Simulation Planning
Steps <\/td>\n<\/tr>\n
274<\/td>\nVerification and Validation
Analytical Verification <\/td>\n<\/tr>\n
275<\/td>\nIntermodel Comparison
Empirical Validation <\/td>\n<\/tr>\n
277<\/td>\nSymbols <\/td>\n<\/tr>\n
278<\/td>\nReferences <\/td>\n<\/tr>\n
280<\/td>\nBibliography <\/td>\n<\/tr>\n
282<\/td>\nI-P_F09_Ch14
Climatic Design Conditions
Annual Design Conditions <\/td>\n<\/tr>\n
284<\/td>\nMonthly Design Conditions <\/td>\n<\/tr>\n
285<\/td>\nData Sources
Calculation of Design Conditions <\/td>\n<\/tr>\n
286<\/td>\nDifferences from Previously Published Design Conditions
Applicability and Characteristics of Design Conditions <\/td>\n<\/tr>\n
288<\/td>\nCalculating clear-sky solar radiation
Solar Constant and Extraterrestrial Solar Radiation
Equation of Time and Solar Time <\/td>\n<\/tr>\n
289<\/td>\nDeclination
Sun Position <\/td>\n<\/tr>\n
290<\/td>\nAir Mass
Clear-Sky Solar Radiation
Transposition to Receiving Surfaces of Various Orientations <\/td>\n<\/tr>\n
291<\/td>\nSolar Angles Related to Receiving Surfaces
Calculation of Clear-Sky Solar Irradiance Incident On Receiving Surface <\/td>\n<\/tr>\n
292<\/td>\nGenerating Design-Day Data
Estimation of Degree-Days
Monthly Degree-Days <\/td>\n<\/tr>\n
293<\/td>\nAnnual Degree-Days
Representativeness of Data and Sources of Uncertainty
Representativeness of Data <\/td>\n<\/tr>\n
294<\/td>\nUncertainty from Variation in Length of Record
Effects of Climate Change <\/td>\n<\/tr>\n
295<\/td>\nEpisodes Exceeding the Design Dry-Bulb Temperature <\/td>\n<\/tr>\n
296<\/td>\nOther Sources of Climatic Information
Joint Frequency Tables of Psychrometric Conditions
Degree Days and Climate Normals <\/td>\n<\/tr>\n
297<\/td>\nTypical Year Data Sets
Sequences of Extreme Temperature and Humidity Durations
Global Weather Data Source Web Page
Observational Data Sets
References <\/td>\n<\/tr>\n
298<\/td>\nBibliography <\/td>\n<\/tr>\n
299<\/td>\nI-P_F09_Ch15
Fenestration Components
Glazing Units <\/td>\n<\/tr>\n
300<\/td>\nFraming
Shading
Determining Fenestration Energy Flow <\/td>\n<\/tr>\n
302<\/td>\nU-Factor (Thermal Transmittance)
Determining Fenestration U-Factors
Center-of-Glass U-Factor
Edge-of-Glass U-Factor <\/td>\n<\/tr>\n
303<\/td>\nFrame U-Factor
Curtain Wall Construction
Surface and Cavity Heat Transfer Coefficients <\/td>\n<\/tr>\n
310<\/td>\nRepresentative U-Factors for Doors <\/td>\n<\/tr>\n
311<\/td>\nSolar Heat Gain and Visible Transmittance
Solar-Optical Properties of Glazing
Optical Properties of Single Glazing Layers <\/td>\n<\/tr>\n
313<\/td>\nOptical Properties of Glazing Systems <\/td>\n<\/tr>\n
315<\/td>\nSolar Heat Gain Coefficient
Calculation of Solar Heat Gain Coefficient <\/td>\n<\/tr>\n
316<\/td>\nDiffuse Radiation
Solar Gain Through Frame and Other Opaque Elements
Solar Heat Gain Coefficient, Visible Transmittance, and Spectrally Averaged Solar-Optical Property Values <\/td>\n<\/tr>\n
317<\/td>\nAirflow Windows
Skylights
Glass Block Walls <\/td>\n<\/tr>\n
326<\/td>\nPlastic Materials for Glazing
Calculation of Solar Heat Gain <\/td>\n<\/tr>\n
327<\/td>\nOpaque Fenestration Elements
Shading and Fenestration Attachments
Shading
Roof Overhangs: Horizontal and Vertical Projections <\/td>\n<\/tr>\n
328<\/td>\nFenestration Attachments <\/td>\n<\/tr>\n
329<\/td>\nSimplified Methodology
Slat-Type Sunshades <\/td>\n<\/tr>\n
330<\/td>\nDrapery <\/td>\n<\/tr>\n
331<\/td>\nRoller Shades and Insect Screens <\/td>\n<\/tr>\n
347<\/td>\nVisual and Thermal Controls
Operational Effectiveness of Shading Devices
Indoor Shading Devices
Double Drapery <\/td>\n<\/tr>\n
348<\/td>\nAir Leakage
Infiltration Through Fenestration
Indoor Air Movement <\/td>\n<\/tr>\n
349<\/td>\nDaylighting
Daylight Prediction <\/td>\n<\/tr>\n
350<\/td>\nLight Transmittance and Daylight Use <\/td>\n<\/tr>\n
352<\/td>\nSelecting Fenestration
Annual Energy Performance
Simplified Techniques for Rough Estimates of Fenestration Annual Energy Performance
Simplified Residential Annual Energy Performance Ratings
Condensation Resistance <\/td>\n<\/tr>\n
354<\/td>\nOccupant Comfort and Acceptance <\/td>\n<\/tr>\n
355<\/td>\nSound Reduction
Strength and Safety <\/td>\n<\/tr>\n
356<\/td>\nLife-Cycle Costs
Durability
Supply and Exhaust Airflow Windows <\/td>\n<\/tr>\n
357<\/td>\nCodes and Standards
National Fenestration Rating Council (NFRC)
United States Energy Policy Act (EPAct)
The ICC 2006 International Energy Conservation Code
ASHRAE\/IESNA Standard 90.1-2007
ASHRAE\/USGBC\/IESNA Draft Standard 189.1P <\/td>\n<\/tr>\n
358<\/td>\nCanadian Standards Association (CSA)
Symbols
References <\/td>\n<\/tr>\n
361<\/td>\nI-P_F09_Ch16
Sustainability Rating Systems
Basic Concepts and Terminology
Ventilation and Infiltration <\/td>\n<\/tr>\n
362<\/td>\nVentilation Air
Forced-Air Distribution Systems
Outside Air Fraction <\/td>\n<\/tr>\n
363<\/td>\nRoom Air Movement
Air Exchange Rate <\/td>\n<\/tr>\n
364<\/td>\nTime Constants
Averaging Time-Varying Ventilation
Age of Air <\/td>\n<\/tr>\n
365<\/td>\nAir Change Effectiveness
Tracer Gas Measurements
Decay or Growth <\/td>\n<\/tr>\n
366<\/td>\nConstant Concentration
Constant Injection
Multizone Air Exchange Measurement
Driving Mechanisms for Ventilation and Infiltration
Stack Pressure <\/td>\n<\/tr>\n
367<\/td>\nWind Pressure <\/td>\n<\/tr>\n
368<\/td>\nMechanical Systems
Combining Driving Forces <\/td>\n<\/tr>\n
369<\/td>\nNeutral Pressure Level
Thermal Draft Coefficient <\/td>\n<\/tr>\n
370<\/td>\nIndoor Air Quality <\/td>\n<\/tr>\n
371<\/td>\nProtection from Extraordinary Events
Thermal Loads <\/td>\n<\/tr>\n
372<\/td>\nEffect on Envelope Insulation
Infiltration Degree-Days
Natural Ventilation
Natural Ventilation Openings <\/td>\n<\/tr>\n
373<\/td>\nCeiling Heights
Required Flow for Indoor Temperature Control
Airflow Through Large Intentional Openings
Flow Caused by Wind Only
Flow Caused by Thermal Forces Only <\/td>\n<\/tr>\n
374<\/td>\nNatural Ventilation Guidelines
Hybrid Ventilation
Residential Air Leakage
Envelope Leakage Measurement <\/td>\n<\/tr>\n
375<\/td>\nAirtightness Ratings
Conversion Between Ratings
Building Air Leakage Data <\/td>\n<\/tr>\n
376<\/td>\nAir Leakage of Building Components
Leakage Distribution <\/td>\n<\/tr>\n
377<\/td>\nMultifamily Building Leakage
Controlling Air Leakage
Residential Ventilation <\/td>\n<\/tr>\n
379<\/td>\nResidential Ventilation Zones
Shelter in Place
Safe Havens
Residential Ventilation and IAQ Control Requirements <\/td>\n<\/tr>\n
380<\/td>\nSource Control
Local Exhaust <\/td>\n<\/tr>\n
381<\/td>\nWhole-House Ventilation
Air Distribution
Selection Principles for Residential Ventilation Systems <\/td>\n<\/tr>\n
382<\/td>\nSimplified Models of Residential Ventilation and Infiltration
Empirical Models
Multizone Models
Single-Zone Models
Superposition of Wind and Stack Effects <\/td>\n<\/tr>\n
383<\/td>\nResidential Calculation Examples <\/td>\n<\/tr>\n
384<\/td>\nCombining Residential Infiltration and Mechanical Ventilation <\/td>\n<\/tr>\n
385<\/td>\nCommercial and Institutional Air Leakage
Commercial Building Envelope Leakage
Air Leakage Through Internal Partitions <\/td>\n<\/tr>\n
386<\/td>\nAir Leakage Through Exterior Doors
Air Leakage Through Automatic Doors <\/td>\n<\/tr>\n
387<\/td>\nAir Exchange Through Air Curtains
Commercial and Institutional Ventilation <\/td>\n<\/tr>\n
388<\/td>\nVentilation Rate Procedure
Survey of Ventilation Rates in Office Buildings
Office Building Example
Location
Building
Occupancy <\/td>\n<\/tr>\n
389<\/td>\nInfiltration
Local Exhausts <\/td>\n<\/tr>\n
390<\/td>\nVentilation <\/td>\n<\/tr>\n
391<\/td>\nSymbols
References <\/td>\n<\/tr>\n
396<\/td>\nBibliography <\/td>\n<\/tr>\n
397<\/td>\nI-P_F09_Ch17
Residential Features
Calculation Approach <\/td>\n<\/tr>\n
398<\/td>\nOther Methods
Residential Heat Balance (RHB) Method
Residential Load Factor (RLF) Method <\/td>\n<\/tr>\n
399<\/td>\nCommon Data and Procedures
General Guidelines
Basic Relationships
Design Conditions <\/td>\n<\/tr>\n
400<\/td>\nBuilding Data <\/td>\n<\/tr>\n
401<\/td>\nLoad Components <\/td>\n<\/tr>\n
404<\/td>\nCooling Load
Peak Load Computation
Opaque Surfaces
Slab Floors <\/td>\n<\/tr>\n
405<\/td>\nTransparent Fenestration Surfaces <\/td>\n<\/tr>\n
406<\/td>\nInfiltration and Ventilation
Internal Gain
Air Distribution System: Heat Gain
Total Latent Load <\/td>\n<\/tr>\n
407<\/td>\nSummary of RLF Cooling Load Equations
Heating Load
Exterior Surfaces Above Grade
Below-Grade and On-Grade Surfaces
Surfaces Adjacent to Buffer Space <\/td>\n<\/tr>\n
408<\/td>\nVentilation and Infiltration
Humidification
Pickup Load
Summary of Heating Load Procedures
Load Calculation Example
Solution <\/td>\n<\/tr>\n
410<\/td>\nSymbols <\/td>\n<\/tr>\n
411<\/td>\nReferences <\/td>\n<\/tr>\n
412<\/td>\nBibliography <\/td>\n<\/tr>\n
413<\/td>\nI-P_F09_Ch18
Cooling Load Calculation Principles
Terminology
Heat Flow Rates <\/td>\n<\/tr>\n
414<\/td>\nTime Delay Effect
Cooling Load Calculation Methods
Cooling Load Calculations in Practice <\/td>\n<\/tr>\n
415<\/td>\nData Assembly
Internal Heat Gains
People
Lighting
Instantaneous Heat Gain from Lighting <\/td>\n<\/tr>\n
418<\/td>\nElectric Motors
Overloading or Underloading
Radiation and Convection
Appliances <\/td>\n<\/tr>\n
419<\/td>\nCooking Appliances <\/td>\n<\/tr>\n
420<\/td>\nHospital and Laboratory Equipment
Office Equipment <\/td>\n<\/tr>\n
423<\/td>\nInfiltration and Moisture Migration Heat Gains
Infiltration <\/td>\n<\/tr>\n
425<\/td>\nStandard Air Volumes
Heat Gain Calculations Using Standard Air Values <\/td>\n<\/tr>\n
426<\/td>\nLatent Heat Gain from Moisture Diffusion
Other Latent Loads
Fenestration Heat Gain
Fenestration Direct Solar , Diffuse Solar , and Conductive Heat Gains <\/td>\n<\/tr>\n
427<\/td>\nExterior Shading
Heat Balance Method
Assumptions
Elements
Outside-Face Heat Balance <\/td>\n<\/tr>\n
428<\/td>\nWall Conduction Process
Inside-Face Heat Balance <\/td>\n<\/tr>\n
429<\/td>\nUsing SHGC to Calculate Solar Heat Gain <\/td>\n<\/tr>\n
430<\/td>\nAir Heat Balance
General Zone for Load Calculation <\/td>\n<\/tr>\n
431<\/td>\nMathematical Description
Conduction Process
Heat Balance Equations
Overall HB Iterative Solution <\/td>\n<\/tr>\n
432<\/td>\nInput Required
Radiant Time Series (RTS) Method <\/td>\n<\/tr>\n
433<\/td>\nAssumptions and Principles
Overview <\/td>\n<\/tr>\n
434<\/td>\nRTS Procedure
Heat Gain Through Exterior Surfaces
Sol-Air Temperature <\/td>\n<\/tr>\n
435<\/td>\nCalculating Conductive Heat Gain Using Conduction Time Series <\/td>\n<\/tr>\n
437<\/td>\nHeat Gain Through Interior Surfaces
Floors <\/td>\n<\/tr>\n
438<\/td>\nCalculating Cooling Load <\/td>\n<\/tr>\n
440<\/td>\nHeating Load Calculations <\/td>\n<\/tr>\n
442<\/td>\nHeat Loss Calculations
Outdoor Design Conditions
Indoor Design Conditions
Calculation of Transmission Heat Losses <\/td>\n<\/tr>\n
444<\/td>\nInfiltration
Heating Safety Factors and Load Allowances
Other Heating Considerations
System Heating and Cooling Load Effects
Zoning <\/td>\n<\/tr>\n
445<\/td>\nVentilation
Air Heat Transport Systems
On\/Off Control Systems
Variable-Air-Volume Systems
Constant-Air-Volume Reheat Systems
Mixed Air Systems
Heat Gain from Fans <\/td>\n<\/tr>\n
446<\/td>\nDuct Surface Heat Transfer
Duct Leakage
Ceiling Return Air Plenum Temperatures <\/td>\n<\/tr>\n
447<\/td>\nCeiling Plenums with Ducted Returns
Floor Plenum Distribution Systems
Plenums in Load Calculations
Central Plant
Piping <\/td>\n<\/tr>\n
448<\/td>\nPumps
Example Cooling and Heating Load Calculations
Single-Room Example
Room Characteristics
Cooling Loads Using RTS Method <\/td>\n<\/tr>\n
456<\/td>\nSingle-Room Example Peak Heating Load <\/td>\n<\/tr>\n
457<\/td>\nWhole-Building Example
Design Process and Shell Building Definition <\/td>\n<\/tr>\n
458<\/td>\nTenant Fit Design Process and Definition <\/td>\n<\/tr>\n
459<\/td>\nRoom by Room Cooling and Heating Loads <\/td>\n<\/tr>\n
460<\/td>\nConclusions <\/td>\n<\/tr>\n
461<\/td>\nPrevious Cooling Load Calculation Methods
References <\/td>\n<\/tr>\n
464<\/td>\nBibliography <\/td>\n<\/tr>\n
467<\/td>\nBuilding Example Drawings <\/td>\n<\/tr>\n
475<\/td>\nI-P_F09_Ch19
General Considerations
Models and Approaches
Characteristics of Models
Forward Models <\/td>\n<\/tr>\n
476<\/td>\nData-Driven Models <\/td>\n<\/tr>\n
477<\/td>\nChoosing an Analysis Method
Selecting Energy Analysis Computer Programs
Tools for Energy Analysis
Component Modeling and Loads
Calculating Space Sensible Loads <\/td>\n<\/tr>\n
478<\/td>\nHeat Balance Method <\/td>\n<\/tr>\n
479<\/td>\nWeighting-Factor Method <\/td>\n<\/tr>\n
480<\/td>\nNormalized Coefficients of Space Air Transfer Functions
Thermal-Network Methods <\/td>\n<\/tr>\n
481<\/td>\nGround Heat Transfer
Simplified Calculation Method for Slab Foundations and Basements <\/td>\n<\/tr>\n
483<\/td>\nSecondary System Components
Fans, Pumps, and Distribution Systems <\/td>\n<\/tr>\n
484<\/td>\nHeat and Mass Transfer Components <\/td>\n<\/tr>\n
485<\/td>\nApplication to Cooling and Dehumidifying Coils <\/td>\n<\/tr>\n
486<\/td>\nPrimary System Components
Modeling Strategies <\/td>\n<\/tr>\n
488<\/td>\nBoiler Model <\/td>\n<\/tr>\n
489<\/td>\nVapor Compression Chiller Models <\/td>\n<\/tr>\n
490<\/td>\nCooling Tower Model <\/td>\n<\/tr>\n
491<\/td>\nSystem Modeling
Overall Modeling Strategies
Degree-Day and Bin Methods <\/td>\n<\/tr>\n
492<\/td>\nBalance Point Temperature
Annual Degree-Day Method <\/td>\n<\/tr>\n
494<\/td>\nMonthly Degree-Days <\/td>\n<\/tr>\n
495<\/td>\nBin Method <\/td>\n<\/tr>\n
496<\/td>\nCorrelation Methods
Simulating Secondary and Primary Systems <\/td>\n<\/tr>\n
497<\/td>\nModeling of System Controls
Integration of System Models <\/td>\n<\/tr>\n
498<\/td>\nData-Driven Modeling
Categories of Data-Driven Methods
Empirical or \u201cBlack-Box\u201d\u009d Approach
Calibrated Simulation Approach <\/td>\n<\/tr>\n
499<\/td>\nGray-Box Approach
Types of Data-Driven Models
Steady-State Models <\/td>\n<\/tr>\n
503<\/td>\nDynamic Models <\/td>\n<\/tr>\n
504<\/td>\nExamples Using Data-Driven Methods
Modeling Utility Bill Data
Neural Network Models <\/td>\n<\/tr>\n
505<\/td>\nModel Selection
MODEL VALIDATION AND TESTING <\/td>\n<\/tr>\n
506<\/td>\nMethodological Basis
External Error Types
Internal Error Types <\/td>\n<\/tr>\n
507<\/td>\nSummary of Previous Testing and Validation Work
References <\/td>\n<\/tr>\n
511<\/td>\nBibliography <\/td>\n<\/tr>\n
515<\/td>\nI-P_F09_Ch20
Indoor Air Quality and Sustainability <\/td>\n<\/tr>\n
516<\/td>\nApplicable Standards and Codes
Terminology <\/td>\n<\/tr>\n
517<\/td>\nPrinciples of Jet Behavior
Air Jet Fundamentals <\/td>\n<\/tr>\n
520<\/td>\nIsothermal Radial Flow Jets
Nonisothermal Jets
Nonisothermal Horizontal Free Jet
Comparison of Free Jet to Attached Jet
Surface Jets (Wall and Ceiling) <\/td>\n<\/tr>\n
521<\/td>\nMultiple Jets
Airflow in Occupied Zone
System Design
Mixed-Air Systems
Outlet Types <\/td>\n<\/tr>\n
523<\/td>\nOutlet Selection and Location <\/td>\n<\/tr>\n
525<\/td>\nInlet Selection and Location
Ceiling-Based Air Diffusion <\/td>\n<\/tr>\n
526<\/td>\nSystem Performance Evaluation <\/td>\n<\/tr>\n
528<\/td>\nFully Stratified Systems
Convective Flows Associated with Space Heat Sources
Characteristics of Thermal Plumes <\/td>\n<\/tr>\n
529<\/td>\nVertical temperature Distribution <\/td>\n<\/tr>\n
530<\/td>\nContaminant Distribution
Design Methods
Ventilation and Heating
Outlet Types <\/td>\n<\/tr>\n
531<\/td>\nOutlet Selection and Location
Return Inlet Selection and Location
System Performance Evaluation
Partially Mixed Systems <\/td>\n<\/tr>\n
532<\/td>\nLower (Mixed) Zone
Stratified Zone
Upper (Mixed) Zone
Temperature Near Floor
Stratification Height <\/td>\n<\/tr>\n
533<\/td>\nControlling Stratification
Heating Systems
Outlets Types
Outlet Selection and Location
Return Inlet Selection and Location <\/td>\n<\/tr>\n
534<\/td>\nSystem Performance Evaluation
Task\/Ambient Conditioning (TAC)
Symbols
References <\/td>\n<\/tr>\n
536<\/td>\nBibliography <\/td>\n<\/tr>\n
537<\/td>\nI-P_F09_Ch21
Bernoulli Equation <\/td>\n<\/tr>\n
538<\/td>\nHead and Pressure
Static Pressure
Velocity Pressure
Total Pressure
Pressure Measurement
System Analysis <\/td>\n<\/tr>\n
541<\/td>\nPressure Changes in System <\/td>\n<\/tr>\n
542<\/td>\nFluid Resistance
Friction Losses
Darcy and Colebrook Equations
Roughness Factors <\/td>\n<\/tr>\n
543<\/td>\nFriction Chart
Noncircular Ducts <\/td>\n<\/tr>\n
545<\/td>\nDynamic Losses
Local Loss Coefficients
Duct Fitting Database
Bends in Flexible Duct <\/td>\n<\/tr>\n
547<\/td>\nDuctwork Sectional Losses
Darcy-Weisbach Equation
Fan\/System Interface
Fan Inlet and Outlet Conditions
Fan System Effect Coefficients <\/td>\n<\/tr>\n
549<\/td>\nTesting, Adjusting, and Balancing Considerations
Duct System Design
Design Considerations
Space Pressure Relationships
Fire and Smoke Management <\/td>\n<\/tr>\n
550<\/td>\nDuct Insulation
Duct System Leakage <\/td>\n<\/tr>\n
551<\/td>\nSystem Component Design Velocities <\/td>\n<\/tr>\n
552<\/td>\nSystem and Duct Noise
Testing and Balancing
Duct Design Methods
Equal-Friction Method
Static Regain Method <\/td>\n<\/tr>\n
553<\/td>\nT-Method
Balancing Dampers
Constant-Volume (CV) Systems
Variable-Air-Volume (VAV) Systems <\/td>\n<\/tr>\n
554<\/td>\nHVAC Duct Design Procedures <\/td>\n<\/tr>\n
555<\/td>\nIndustrial Exhaust System Duct Design <\/td>\n<\/tr>\n
557<\/td>\nReferences <\/td>\n<\/tr>\n
562<\/td>\nFitting Loss Coefficients
Round Fittings <\/td>\n<\/tr>\n
588<\/td>\nRectangular Fittings <\/td>\n<\/tr>\n
605<\/td>\nI-P_F09_Ch22
Pressure Drop Equations
Darcy-Weisbach Equation
Hazen-Williams Equation
Valve and Fitting Losses <\/td>\n<\/tr>\n
608<\/td>\nLosses in Multiple Fittings
Calculating Pressure Losses <\/td>\n<\/tr>\n
609<\/td>\nWater Piping
Flow Rate Limitations
Noise Generation
Erosion
Allowances for Aging <\/td>\n<\/tr>\n
610<\/td>\nWater Hammer
Other Considerations
Other Piping Materials and Fluids
Hydronic System Piping
Range of Usage of Pressure Drop Charts
Air Separation <\/td>\n<\/tr>\n
612<\/td>\nValve and Fitting Pressure Drop
Service Water Piping <\/td>\n<\/tr>\n
615<\/td>\nPlastic Pipe
Procedure for Sizing Cold Water Systems <\/td>\n<\/tr>\n
616<\/td>\nSteam Piping
Pipe Sizes <\/td>\n<\/tr>\n
617<\/td>\nSizing Charts
Low-Pressure Steam Piping
High-Pressure Steam Piping
Use of Basic and Velocity Multiplier Charts
Steam Condensate Systems
Two-Pipe Systems <\/td>\n<\/tr>\n
623<\/td>\nOne-Pipe Systems <\/td>\n<\/tr>\n
624<\/td>\nGas Piping <\/td>\n<\/tr>\n
625<\/td>\nFuel Oil Piping <\/td>\n<\/tr>\n
626<\/td>\nPipe Sizes for Heavy Oil
References <\/td>\n<\/tr>\n
629<\/td>\nI-P_F09_Ch23
Design Considerations
Energy Conservation
Economic Thickness <\/td>\n<\/tr>\n
630<\/td>\nPersonnel Protection <\/td>\n<\/tr>\n
631<\/td>\nCondensation Control
Freeze Prevention <\/td>\n<\/tr>\n
632<\/td>\nNoise Control <\/td>\n<\/tr>\n
633<\/td>\nFire Safety <\/td>\n<\/tr>\n
634<\/td>\nCorrosion Under Insulation <\/td>\n<\/tr>\n
635<\/td>\nMaterials and Systems
Categories of Insulation Materials
Physical Properties of Insulation Materials <\/td>\n<\/tr>\n
636<\/td>\nWeather Protection <\/td>\n<\/tr>\n
637<\/td>\nVapor Retarders <\/td>\n<\/tr>\n
638<\/td>\nInstallation
Pipe Insulation <\/td>\n<\/tr>\n
640<\/td>\nTanks, Vessels, and Equipment
Ducts <\/td>\n<\/tr>\n
643<\/td>\nDesign Data
Estimating Heat Loss and Gain
Controlling Surface Temperatures <\/td>\n<\/tr>\n
645<\/td>\nProject Specifications <\/td>\n<\/tr>\n
646<\/td>\nStandards <\/td>\n<\/tr>\n
647<\/td>\nReferences <\/td>\n<\/tr>\n
649<\/td>\nI-P_F09_Ch24
Flow Patterns <\/td>\n<\/tr>\n
651<\/td>\nWind Pressure on Buildings
Local Wind Pressure Coefficients <\/td>\n<\/tr>\n
652<\/td>\nSurface-Averaged Wall Pressures
Roof Pressures <\/td>\n<\/tr>\n
653<\/td>\nInterference and Shielding Effects on Pressures <\/td>\n<\/tr>\n
654<\/td>\nSources of Wind Data
Estimating Wind at Sites Remote from Recording Stations <\/td>\n<\/tr>\n
655<\/td>\nWind Effects on System Operation
Natural and Mechanical Ventilation <\/td>\n<\/tr>\n
657<\/td>\nMinimizing Wind Effect on System Volume
Chemical Hood Operation
Building Pressure Balance and Internal Flow Control
Pressure Balance
Internal Flow Control
Physical and Computational Modeling
Computational Modeling <\/td>\n<\/tr>\n
658<\/td>\nPhysical Modeling <\/td>\n<\/tr>\n
659<\/td>\nSimilarity Requirements
Wind Simulation Facilities
Designing Model Test Programs <\/td>\n<\/tr>\n
660<\/td>\nSymbols
References <\/td>\n<\/tr>\n
662<\/td>\nBibliography <\/td>\n<\/tr>\n
663<\/td>\nI-P_F09_Ch25
Terminology and Symbols
Heat <\/td>\n<\/tr>\n
664<\/td>\nAir
Moisture
Environmental Hygrothermal Loads
Ambient Temperature and Humidity <\/td>\n<\/tr>\n
665<\/td>\nSolar Radiation
Exterior Condensation
Wind-Driven Rain <\/td>\n<\/tr>\n
666<\/td>\nConstruction Moisture
Ground- and Surface Water
Air Pressure Differentials
Heat Transfer <\/td>\n<\/tr>\n
667<\/td>\nSteady-State Thermal Response
Thermal Resistance of a Flat Assembly <\/td>\n<\/tr>\n
668<\/td>\nCombined Convective and Radiative Surface Transfer
Heat Flow Across an Air Space
Total Thermal Resistance of a Flat Building Assembly <\/td>\n<\/tr>\n
669<\/td>\nThermal Transmittance of a Flat Building Assembly
Interface Temperatures in a Flat Building Component
Series and Parallel Heat Flow Paths
Thermal Bridges and Whole-Assembly Thermal Transmittance
Transient Thermal Response
Airflow <\/td>\n<\/tr>\n
670<\/td>\nWater Vapor Flow by Air Movement
Heat Flux with Airflow
Moisture Transfer
Moisture Storage in Building Materials <\/td>\n<\/tr>\n
672<\/td>\nMoisture Flow Mechanisms
Water Vapor Flow by Diffusion
Water Flow by Capillary Suction <\/td>\n<\/tr>\n
673<\/td>\nLiquid Flow at Low Moisture Content <\/td>\n<\/tr>\n
674<\/td>\nTransient Moisture Flow
Combined Heat, Air , and Moisture Transfer
Simplified Hygrothermal Design Calculations and Analyses
Surface Humidity and Condensation <\/td>\n<\/tr>\n
675<\/td>\nInterstitial Condensation and Drying
Dew-Point Methods
Transient Computational Analysis <\/td>\n<\/tr>\n
676<\/td>\nCriteria to Evaluate Hygrothermal Simulation Results
Thermal Comfort
Perceived Air Quality
Human Health
Durability of Finishes and Structure <\/td>\n<\/tr>\n
677<\/td>\nEnergy Efficiency
References <\/td>\n<\/tr>\n
679<\/td>\nI-P_F09_Ch26
Thermal Properties
Air Spaces
Surface Resistances
Air Cavities <\/td>\n<\/tr>\n
680<\/td>\nBuilding and Thermal Insulation Materials
Thermal Insulation Materials <\/td>\n<\/tr>\n
682<\/td>\nBasic Materials
Physical Structure and Form
Apparent Thermal Conductivity <\/td>\n<\/tr>\n
689<\/td>\nMechanical Properties
Health and Safety <\/td>\n<\/tr>\n
690<\/td>\nAcoustics
Other Properties
Building Materials
Property Data
Soils <\/td>\n<\/tr>\n
691<\/td>\nAir Transmission and Hygric Properties
Air Barriers and Water Vapor Retarders
Air Barriers <\/td>\n<\/tr>\n
692<\/td>\nVapor Retarders
Functions and Properties <\/td>\n<\/tr>\n
693<\/td>\nClassifications
Air Transmission and Water Vapor Property Data
Moisture Storage Data <\/td>\n<\/tr>\n
696<\/td>\nCodes and Standards <\/td>\n<\/tr>\n
697<\/td>\nReferences <\/td>\n<\/tr>\n
700<\/td>\nBibliography <\/td>\n<\/tr>\n
701<\/td>\nI-P_F09_Ch27
Heat Transfer
One-Dimensional U-Factor Calculation
Wall U-Factor <\/td>\n<\/tr>\n
702<\/td>\nRoof U-Factor
Attics
Basement Walls and Floors <\/td>\n<\/tr>\n
703<\/td>\nTwo-Dimensional U-Factor Calculation
Wood-Frame Walls <\/td>\n<\/tr>\n
704<\/td>\nMasonry Walls
Constructions Containing Metal <\/td>\n<\/tr>\n
705<\/td>\nZone Method of Calculation <\/td>\n<\/tr>\n
706<\/td>\nModified Zone Method for Metal Stud Walls with Insulated Cavities <\/td>\n<\/tr>\n
707<\/td>\nComplex Assemblies <\/td>\n<\/tr>\n
708<\/td>\nWindows and Doors
Moisture Transport
Wall or Roof with Insulated Sheathing
Vapor Pressure Profile (Glaser or Dew-Point) Analysis <\/td>\n<\/tr>\n
709<\/td>\nWinter Wall Wetting Examples <\/td>\n<\/tr>\n
711<\/td>\nTransient Hygrothermal Modeling <\/td>\n<\/tr>\n
712<\/td>\nAir Movement
Equivalent Permeance
References <\/td>\n<\/tr>\n
713<\/td>\nBibliography <\/td>\n<\/tr>\n
715<\/td>\nI-P_F09_Ch28
Principles of Combustion
Combustion Reactions
Flammability Limits <\/td>\n<\/tr>\n
716<\/td>\nTable 1 Combustion Reactions of Common Fuel Constituents
Table 2 Flammability Limits and Ignition Temperatures of Common Fuels in Fuel\/Air Mixtures
Ignition Temperature
Combustion Modes <\/td>\n<\/tr>\n
717<\/td>\nHeating Value
Table 3 Heating Values of Substances Occurring in Common Fuels
Altitude Compensation <\/td>\n<\/tr>\n
718<\/td>\nFig. 1 Altitude Effects on Gas Combustion Appliances
Fig. 1 Altitude Effects on Gas Combustion Appliances <\/td>\n<\/tr>\n
719<\/td>\nFuel Classification
Gaseous Fuels
Types and Properties <\/td>\n<\/tr>\n
720<\/td>\nTable 4 Propane\/Air and Butane\/Air Gas Mixtures
Liquid Fuels
Types of Fuel Oils
Characteristics of Fuel Oils <\/td>\n<\/tr>\n
721<\/td>\nFig. 2 Approximate Viscosity of Fuel Oils
Fig. 2 Approximate Viscosity of Fuel Oils
Table 5 Sulfur Content of Marketed Fuel Oils
Table 6 Typical API Gravity, Density, and Higher Heating Value of Standard Grades of Fuel Oil <\/td>\n<\/tr>\n
722<\/td>\nTypes and Properties of Liquid Fuels for Engines
Solid Fuels
Types of Coals
Table 7 Classification of Coals by Ranka <\/td>\n<\/tr>\n
723<\/td>\nCharacteristics of Coal
Table 8 Typical Ultimate Analyses for Coals
Combustion Calculations <\/td>\n<\/tr>\n
724<\/td>\nAir Required for Combustion
Table 9 Approximate Air Requirements for Stoichiometric Combustion of Fuels <\/td>\n<\/tr>\n
725<\/td>\nTable 10 Approximate Air Requirements for Stoichiometric Combustion of Various Fuels
Table 11 Approximate Maximum Theoretical (Stoichiometric) CO2 Values, and CO2 Values of Various Fuels with Different Percentages of Excess Air
Theoretical CO2
Quantity of Flue Gas Produced <\/td>\n<\/tr>\n
726<\/td>\nWater Vapor and Dew Point of Flue Gas
Fig. 3 Water Vapor and Dew Point of Flue Gas
Fig. 3 Water Vapor and Dew Point of Flue Gas
Sample Combustion Calculations <\/td>\n<\/tr>\n
727<\/td>\nFig. 4 Theoretical Dew Points of Combustion Products of Industrial Fuels
Fig. 4 Theoretical Dew Points of Combustion Products of Industrial Fuels
Efficiency Calculations
Fig. 5 Influence of Sulfur Oxides on Flue Gas Dew Point
Fig. 5 Influence of Sulfur Oxides on Flue Gas Dew Point <\/td>\n<\/tr>\n
728<\/td>\nSeasonal Efficiency
Combustion Considerations
Air Pollution <\/td>\n<\/tr>\n
729<\/td>\nFig. 6 Flue Gas Losses with Various Fuels
Fig. 6 Flue Gas Losses with Various Fuels <\/td>\n<\/tr>\n
730<\/td>\nTable 12 NOx Emission Factors for Combustion Sources Without Emission Controls
Condensation and Corrosion <\/td>\n<\/tr>\n
731<\/td>\nAbnormal Combustion Noise in Gas Appliances
Soot
References <\/td>\n<\/tr>\n
732<\/td>\nBibliography <\/td>\n<\/tr>\n
733<\/td>\nI-P_F09_Ch29
Refrigerant Properties
Global Environmental Properties <\/td>\n<\/tr>\n
736<\/td>\nPhysical Properties <\/td>\n<\/tr>\n
737<\/td>\nElectrical Properties
Sound Velocity <\/td>\n<\/tr>\n
738<\/td>\nRefrigerant Performance <\/td>\n<\/tr>\n
740<\/td>\nSafety
Leak Detection
Electronic Detection
Bubble Method
UV Dye Method <\/td>\n<\/tr>\n
741<\/td>\nAmmonia Leaks
Effect on Construction Materials
Metals
Elastomers <\/td>\n<\/tr>\n
742<\/td>\nPlastics
References
Bibliography <\/td>\n<\/tr>\n
743<\/td>\nI-P_F09_Ch30 <\/td>\n<\/tr>\n
744<\/td>\nRefrigerant 12 <\/td>\n<\/tr>\n
746<\/td>\nRefrigerant 22 <\/td>\n<\/tr>\n
748<\/td>\nRefrigerant 23 <\/td>\n<\/tr>\n
750<\/td>\nRefrigerant 32 <\/td>\n<\/tr>\n
752<\/td>\nRefrigerant 123 <\/td>\n<\/tr>\n
754<\/td>\nRefrigerant 124 <\/td>\n<\/tr>\n
756<\/td>\nRefrigerant 125 <\/td>\n<\/tr>\n
758<\/td>\nRefrigerant 134a <\/td>\n<\/tr>\n
762<\/td>\nRefrigerant 143a <\/td>\n<\/tr>\n
764<\/td>\nRefrigerant 152a <\/td>\n<\/tr>\n
766<\/td>\nRefrigerant 245fa <\/td>\n<\/tr>\n
768<\/td>\nRefrigerant 404A <\/td>\n<\/tr>\n
770<\/td>\nRefrigerant 407C <\/td>\n<\/tr>\n
772<\/td>\nRefrigerant 410A <\/td>\n<\/tr>\n
774<\/td>\nRefrigerant 507A <\/td>\n<\/tr>\n
776<\/td>\nRefrigerant 717 (Ammonia) <\/td>\n<\/tr>\n
778<\/td>\nRefrigerant 718 (Water\/Steam) <\/td>\n<\/tr>\n
780<\/td>\nRefrigerant 744 (Carbon Dioxide) <\/td>\n<\/tr>\n
782<\/td>\nRefrigerant 50 (Methane) <\/td>\n<\/tr>\n
784<\/td>\nRefrigerant 170 (Ethane) <\/td>\n<\/tr>\n
786<\/td>\nRefrigerant 290 (Propane) <\/td>\n<\/tr>\n
788<\/td>\nRefrigerant 600 (n-Butane) <\/td>\n<\/tr>\n
790<\/td>\nRefrigerant 600a (Isobutane) <\/td>\n<\/tr>\n
792<\/td>\nRefrigerant 1150 (Ethylene) <\/td>\n<\/tr>\n
794<\/td>\nRefrigerant 1270 (Propylene) <\/td>\n<\/tr>\n
796<\/td>\nRefrigerant 702 (Normal Hydrogen) <\/td>\n<\/tr>\n
798<\/td>\nRefrigerant 702p (Parahydrogen) <\/td>\n<\/tr>\n
800<\/td>\nRefrigerant 704 (Helium) <\/td>\n<\/tr>\n
802<\/td>\nRefrigerant 728 (Nitrogen) <\/td>\n<\/tr>\n
804<\/td>\nRefrigerant 729 (Air) <\/td>\n<\/tr>\n
806<\/td>\nRefrigerant 732 (Oxygen) <\/td>\n<\/tr>\n
808<\/td>\nRefrigerant 740 (Argon) <\/td>\n<\/tr>\n
810<\/td>\nAmmonia\/Water Solutions Prepared by Kwang Kim and Keith Herold, Center for Environmental Energy Engineering, University of Maryland at College Park <\/td>\n<\/tr>\n
812<\/td>\nWater\/Lithium Bromide Solutions <\/td>\n<\/tr>\n
813<\/td>\nAqueous Lithium Bromide Solutions <\/td>\n<\/tr>\n
814<\/td>\nReferences <\/td>\n<\/tr>\n
819<\/td>\nI-P_F09_Ch31
Brines
Physical Properties <\/td>\n<\/tr>\n
822<\/td>\nCorrosion Inhibition
Inhibited Glycols
Physical Properties <\/td>\n<\/tr>\n
829<\/td>\nCorrosion Inhibition
Service Considerations <\/td>\n<\/tr>\n
830<\/td>\nHalocarbons <\/td>\n<\/tr>\n
831<\/td>\nNonhalocarbon, Nonaqueous Fluids
References
Bibliography <\/td>\n<\/tr>\n
832<\/td>\nI-P_F09_Ch32
Desiccant Applications
Desiccant Cycle <\/td>\n<\/tr>\n
834<\/td>\nTypes of Desiccants
Liquid Absorbents <\/td>\n<\/tr>\n
835<\/td>\nSolid Adsorbents <\/td>\n<\/tr>\n
836<\/td>\nDesiccant Isotherms
Desiccant Life
Cosorption of Water Vapor and Indoor Air Contaminants <\/td>\n<\/tr>\n
837<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
838<\/td>\nI-P_F09_Ch33 <\/td>\n<\/tr>\n
841<\/td>\nReferences <\/td>\n<\/tr>\n
842<\/td>\nI-P_F09_Ch34
Characteristics of Energy and Energy Resource Forms
Forms of On-Site Energy
Nonrenewable and Renewable Energy Resources
Characteristics of Fossil Fuels and Electricity <\/td>\n<\/tr>\n
843<\/td>\nOn-Site Energy\/Energy Resource Relationships
Quantifiable Relationships
Intangible Relationships <\/td>\n<\/tr>\n
844<\/td>\nSummary
Energy Resource Planning
Integrated Resource Planning (IRP)
Tradable Emission Credits <\/td>\n<\/tr>\n
845<\/td>\nOverview of Global Energy Resources
World Energy Resources
Production
Reserves <\/td>\n<\/tr>\n
846<\/td>\nConsumption <\/td>\n<\/tr>\n
847<\/td>\nCarbon Emissions
U.S. Energy Use
Per Capita Energy Consumption <\/td>\n<\/tr>\n
848<\/td>\nProjected Overall Energy Consumption <\/td>\n<\/tr>\n
849<\/td>\nOutlook Summary
U.S. Agencies and Associations
References
Bibliography <\/td>\n<\/tr>\n
850<\/td>\nI-P_F09_Ch35
Definition
Characteristics of Sustainability
Sustainability Addresses the Future
Sustainability Has Many Contributors
Sustainability Is Comprehensive
Technology Plays Only a Partial Role <\/td>\n<\/tr>\n
851<\/td>\nFactors Impacting Sustainability
Primary HVAC&R Considerations in Sustainable Design
Energy Resource Availability
Fresh Water Supply <\/td>\n<\/tr>\n
852<\/td>\nEffective and Efficient Use of Energy Resources and Water
Material Resource Availability and Management
Air, Noise, and Water Pollution
Solid and Liquid Waste Disposal
Factors Driving Sustainability into Design Practice
Climate Change <\/td>\n<\/tr>\n
853<\/td>\nRegulatory Environment
Evolving Standards of Care
Changing Design Process <\/td>\n<\/tr>\n
854<\/td>\nOther Opportunities
Designing for Effective Energy Resource Use
Energy Ethic: Resource Conservation Design Principles
Energy and Power
Simplicity
Self-Imposed Budgets
Design Process for Energy-Efficient Projects <\/td>\n<\/tr>\n
855<\/td>\nBuilding Energy Use Elements <\/td>\n<\/tr>\n
857<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
858<\/td>\nI-P_F09_Ch36
Terminology <\/td>\n<\/tr>\n
860<\/td>\nUncertainty Analysis
Uncertainty Sources
Uncertainty of a Measured Variable <\/td>\n<\/tr>\n
861<\/td>\nTemperature Measurement
Sampling and Averaging <\/td>\n<\/tr>\n
862<\/td>\nStatic Temperature Versus Total Temperature
Liquid-in-Glass Thermometers
Sources of Thermometer Errors
Resistance Thermometers <\/td>\n<\/tr>\n
863<\/td>\nResistance Temperature Devices <\/td>\n<\/tr>\n
864<\/td>\nThermistors
Semiconductor Devices
Thermocouples <\/td>\n<\/tr>\n
865<\/td>\nWire Diameter and Composition
Multiple Thermocouples <\/td>\n<\/tr>\n
866<\/td>\nSurface Temperature Measurement
Thermocouple Construction
Optical Pyrometry
Infrared Radiation Thermometers
Infrared Thermography <\/td>\n<\/tr>\n
867<\/td>\nHumidity Measurement
Psychrometers <\/td>\n<\/tr>\n
868<\/td>\nDew-Point Hygrometers
Condensation Dew-Point Hygrometers
Salt-Phase Heated Hygrometers
Mechanical Hygrometers
Electrical Impedance and Capacitance Hygrometers
Dunmore Hygrometers <\/td>\n<\/tr>\n
869<\/td>\nPolymer Film Electronic Hygrometers
Ion Exchange Resin Electric Hygrometers
Impedance-Based Porous Ceramic Electronic Hygrometers
Aluminum Oxide Capacitive Sensor
Electrolytic Hygrometers
Piezoelectric Sorption
Spectroscopic (Radiation Absorption) Hygrometers
Gravimetric Hygrometers
Calibration <\/td>\n<\/tr>\n
870<\/td>\nPressure Measurement
Units
Instruments
Pressure Standards
Mechanical Pressure Gages <\/td>\n<\/tr>\n
871<\/td>\nElectromechanical Transducers
General Considerations <\/td>\n<\/tr>\n
872<\/td>\nAir Velocity Measurement
Airborne Tracer Techniques
Anemometers
Deflecting Vane Anemometers
Propeller or Revolving (Rotating) Vane Anemometers
Cup Anemometers
Thermal Anemometers <\/td>\n<\/tr>\n
874<\/td>\nLaser Doppler Velocimeters (or Anemometers)
Particle Image Velocimetry (PIV)
Pitot-Static Tubes
Example Calculation <\/td>\n<\/tr>\n
875<\/td>\nMeasuring Flow in Ducts <\/td>\n<\/tr>\n
876<\/td>\nAirflow-Measuring Hoods
Flow Rate Measurement
Flow Measurement Methods
Venturi, Nozzle, and Orifice Flowmeters <\/td>\n<\/tr>\n
878<\/td>\nVariable-Area Flowmeters (Rotameters)
Positive-Displacement Meters
Turbine Flowmeters <\/td>\n<\/tr>\n
879<\/td>\nAir Infiltration, Airtightness, and Outdoor Air Ventilation Rate Measurement <\/td>\n<\/tr>\n
880<\/td>\nCarbon Dioxide
Carbon Dioxide Measurement
Nondispersive Infrared CO2 Detectors
Calibration <\/td>\n<\/tr>\n
881<\/td>\nApplications
Amperometric Electrochemical CO2 Detectors
Photoacoustic CO2 Detectors
Open-Cell Sensors
Closed-Cell Sensors
Potentiometric Electrochemical CO2 Detectors
Colorimetric Detector Tubes <\/td>\n<\/tr>\n
882<\/td>\nLaboratory Measurements
Electric Measurement
Ammeters
Voltmeters
Wattmeters
Power-Factor Meters
Rotative Speed Measurement
Tachometers
Stroboscopes
AC Tachometer-Generators <\/td>\n<\/tr>\n
884<\/td>\nSound and Vibration Measurement
Sound Measurement
Microphones
Sound Measurement Systems
Frequency Analysis
Sound Chambers <\/td>\n<\/tr>\n
885<\/td>\nCalibration
Vibration Measurement
Transducers
Vibration Measurement Systems
Calibration <\/td>\n<\/tr>\n
886<\/td>\nLighting Measurement
Thermal Comfort Measurement
Clothing and Activity Level
Air Temperature
Air Velocity
Plane Radiant Temperature
Mean Radiant Temperature <\/td>\n<\/tr>\n
887<\/td>\nAir Humidity
Calculating Thermal Comfort
Integrating Instruments
Moisture Content and Transfer Measurement
Sorption Isotherm
Vapor Permeability <\/td>\n<\/tr>\n
888<\/td>\nLiquid Diffusivity
Heat Transfer Through Building Materials
Thermal Conductivity
Thermal Conductance and Resistance
Air Contaminant Measurement <\/td>\n<\/tr>\n
889<\/td>\nCombustion Analysis
Flue Gas Analysis
Data Acquisition and Recording
Digital Recording <\/td>\n<\/tr>\n
890<\/td>\nData-Logging Devices
Standards <\/td>\n<\/tr>\n
891<\/td>\nSymbols <\/td>\n<\/tr>\n
892<\/td>\nReferences <\/td>\n<\/tr>\n
893<\/td>\nBibliography <\/td>\n<\/tr>\n
894<\/td>\nI-P_F09_Ch37
Abbreviations for Text, Drawings, and Computer Programs
Computer Programs
Letter Symbols <\/td>\n<\/tr>\n
903<\/td>\nPiping System Identification
Definitions
Method of Identification <\/td>\n<\/tr>\n
904<\/td>\nCodes and Standards <\/td>\n<\/tr>\n
906<\/td>\nI-P_F09_Ch38 <\/td>\n<\/tr>\n
908<\/td>\nI-P_F09_Ch39
Selected Codes and Standards Published by Various Societies and Associations (Continued) <\/td>\n<\/tr>\n
933<\/td>\nOrganizations <\/td>\n<\/tr>\n
936<\/td>\n2009INDEX_I-PIX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASHRAE Fundamentals Handbook<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASHRAE<\/b><\/a><\/td>\n2009<\/td>\n975<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":121592,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2719],"product_tag":[],"class_list":{"0":"post-121590","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ashrae","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/121590","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/121592"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=121590"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=121590"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=121590"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}