{"id":194309,"date":"2024-10-19T12:19:46","date_gmt":"2024-10-19T12:19:46","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ashrae-fundamentals-handbook-ip-2017\/"},"modified":"2024-10-25T04:50:51","modified_gmt":"2024-10-25T04:50:51","slug":"ashrae-fundamentals-handbook-ip-2017","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ashrae\/ashrae-fundamentals-handbook-ip-2017\/","title":{"rendered":"ASHRAE Fundamentals Handbook IP 2017"},"content":{"rendered":"

The 2017 ASHRAE Handbook-Fundamentals covers basic principles and data used in the HVAC&R industry. Its more than 1,000 pages cover basic principles such as thermodynamics, psychrometrics, and heat transfer, and provide practical guidance on building envelope, indoor environmental quality, load calculations, duct and piping system design, refrigerants, energy resources, sustainability, and more. An accompanying CD-ROM contains all the volume’s chapters in both I-P and SI units. Each chapter has been reviewed by the hundreds of industry experts on ASHRAE Technical Committees, who update chapters to cover current requirements, technology, and design practice. This expert review and revision sets the ASHRAE Handbook apart from other references. The 2017 edition includes a new chapter’s Chapter 36, Moisture Management in Buildings, which presents data on indoor vapor release and measured indoor\/outdoor vapor pressure\/concentration differences, and discusses moisture sources and sinks that can reduce materials’ durability, as well as the negative effects of insufficient or excessive indoor relative humidity. Chapter 14, Climatic Design Information, now contains temperature and humidity design conditions and related information for 8118 locations in the U.S., Canada, and other countries around the world- that’s 1675 more locations than the 2013 edition, and more than 2500 added locations compared to the 2009 edition. That’s more of the climate data you need for load and energy calculations. For your load calculations, Chapter 18, Nonresidential Cooling and Heating Load Calculations, has new design data for lighting power densities, motors, kitchen equipment, LED lighting, walls and roofs, and an updated example calculation.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nCover <\/td>\n<\/tr>\n
2<\/td>\nFront Matter <\/td>\n<\/tr>\n
3<\/td>\nDedicated To The Advancement Of
The Profession And Its Allied Industries
DISCLAIMER <\/td>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
6<\/td>\nCONTRIBUTORS <\/td>\n<\/tr>\n
9<\/td>\nASHRAE Research: Improving the Quality of Life
Preface <\/td>\n<\/tr>\n
10<\/td>\nCHAPTER 1 – PSYCHROMETRICS
1. Composition of Dry and Moist Air
2. U.S. Standard Atmosphere <\/td>\n<\/tr>\n
11<\/td>\n3. Thermodynamic Properties of Moist Air <\/td>\n<\/tr>\n
15<\/td>\n4. Thermodynamic Properties of Water at Saturation <\/td>\n<\/tr>\n
21<\/td>\n5. Humidity Parameters
Basic Parameters
Humidity Parameters Involving Saturation
6. Perfect Gas Relationships for Dry and Moist Air <\/td>\n<\/tr>\n
22<\/td>\n7. Thermodynamic Wet-Bulb and Dew-Point Temperature <\/td>\n<\/tr>\n
23<\/td>\n8. Numerical Calculation of Moist Air Properties
Moist Air Property Tables for Standard Pressure
9. Psychrometric Charts <\/td>\n<\/tr>\n
25<\/td>\n10. Typical Air-Conditioning Processes
Moist Air Sensible Heating or Cooling <\/td>\n<\/tr>\n
26<\/td>\nMoist Air Cooling and Dehumidification
Adiabatic Mixing of Two Moist Airstreams <\/td>\n<\/tr>\n
27<\/td>\nAdiabatic Mixing of Water Injected into Moist Air
Space Heat Absorption and Moist Air Moisture Gains <\/td>\n<\/tr>\n
28<\/td>\n11. Transport Properties of Moist Air
12. Symbols <\/td>\n<\/tr>\n
29<\/td>\nReferences <\/td>\n<\/tr>\n
30<\/td>\nBibliography <\/td>\n<\/tr>\n
32<\/td>\nCHAPTER 2 – THERMODYNAMICS AND REFRIGERATION CYCLES
1. Thermodynamics
1.1 Stored Energy
1.2 Energy in Transition <\/td>\n<\/tr>\n
33<\/td>\n1.3 First Law of Thermodynamics
1.4 Second Law of Thermodynamics <\/td>\n<\/tr>\n
34<\/td>\n1.5 Thermodynamic Analysis of Refrigeration Cycles <\/td>\n<\/tr>\n
35<\/td>\n1.6 Equations of State
1.7 Calculating Thermodynamic Properties <\/td>\n<\/tr>\n
36<\/td>\nPhase Equilibria for Multicomponent Systems <\/td>\n<\/tr>\n
37<\/td>\n2. Compression Refrigeration Cycles
2.1 Carnot Cycle <\/td>\n<\/tr>\n
38<\/td>\n2.2 Theoretical Single-Stage Cycle Using a Pure Refrigerant or Azeotropic Mixture <\/td>\n<\/tr>\n
40<\/td>\n2.3 Lorenz Refrigeration Cycle <\/td>\n<\/tr>\n
41<\/td>\n2.4 Theoretical Single-Stage Cycle Using Zeotropic Refrigerant Mixture
2.5 Multistage Vapor Compression Refrigeration Cycles <\/td>\n<\/tr>\n
42<\/td>\n2.6 Actual Refrigeration Systems <\/td>\n<\/tr>\n
44<\/td>\n3. Absorption Refrigeration Cycles
3.1 Ideal Thermal Cycle <\/td>\n<\/tr>\n
45<\/td>\n3.2 Working-Fluid Phase Change Constraints <\/td>\n<\/tr>\n
46<\/td>\nTemperature Glide
3.3 Working Fluids <\/td>\n<\/tr>\n
47<\/td>\n3.4 Effect of Fluid Properties on Cycle Performance
3.5 Absorption Cycle Representations
3.6 Conceptualizing the Cycle <\/td>\n<\/tr>\n
48<\/td>\n3.7 Absorption Cycle Modeling
Analysis and Performance Simulation <\/td>\n<\/tr>\n
50<\/td>\nDouble-Effect Cycle
3.8 Ammonia\/Water Absorption Cycles <\/td>\n<\/tr>\n
51<\/td>\n4. Adsorption Refrigeration Systems <\/td>\n<\/tr>\n
52<\/td>\n4.1 Symbols
References <\/td>\n<\/tr>\n
53<\/td>\nBibliography <\/td>\n<\/tr>\n
54<\/td>\nCHAPTER 3 – FLUID FLOW
1. Fluid Properties
Density <\/td>\n<\/tr>\n
55<\/td>\n2. Basic Relations of Fluid Dynamics
Continuity in a Pipe or Duct
Bernoulli Equation and Pressure Variation in Flow Direction <\/td>\n<\/tr>\n
56<\/td>\nLaminar Flow
Turbulence
3. Basic Flow Processes
Wall Friction
Boundary Layer <\/td>\n<\/tr>\n
57<\/td>\nFlow Patterns with Separation <\/td>\n<\/tr>\n
58<\/td>\nDrag Forces on Bodies or Struts
Nonisothermal Effects <\/td>\n<\/tr>\n
59<\/td>\n4. Flow Analysis
Generalized Bernoulli Equation
Conduit Friction <\/td>\n<\/tr>\n
61<\/td>\nValve, Fitting, and Transition Losses <\/td>\n<\/tr>\n
62<\/td>\nControl Valve Characterization for Liquids
Incompressible Flow in Systems <\/td>\n<\/tr>\n
63<\/td>\nFlow Measurement <\/td>\n<\/tr>\n
64<\/td>\nUnsteady Flow <\/td>\n<\/tr>\n
65<\/td>\nCompressibility <\/td>\n<\/tr>\n
66<\/td>\nCompressible Conduit Flow
Cavitation <\/td>\n<\/tr>\n
67<\/td>\n5. Noise in Fluid Flow
6. Symbols
References <\/td>\n<\/tr>\n
68<\/td>\nbibliography <\/td>\n<\/tr>\n
70<\/td>\nCHAPTER 4 – HEAT TRANSFER
1. Heat Transfer Processes
Conduction
Convection <\/td>\n<\/tr>\n
71<\/td>\nRadiation
Combined Radiation and Convection
Contact or Interface Resistance
Heat Flux <\/td>\n<\/tr>\n
72<\/td>\nOverall Resistance and Heat Transfer Coefficient
2. Thermal Conduction
One-Dimensional Steady-State Conduction <\/td>\n<\/tr>\n
73<\/td>\nTwo- and Three-Dimensional Steady-State Conduction: Shape Factors <\/td>\n<\/tr>\n
75<\/td>\nExtended Surfaces <\/td>\n<\/tr>\n
77<\/td>\nTransient Conduction <\/td>\n<\/tr>\n
80<\/td>\n3. Thermal Radiation <\/td>\n<\/tr>\n
81<\/td>\nBlackbody Radiation
Actual Radiation <\/td>\n<\/tr>\n
82<\/td>\nAngle Factor <\/td>\n<\/tr>\n
83<\/td>\nRadiant Exchange Between Opaque Surfaces <\/td>\n<\/tr>\n
85<\/td>\nRadiation in Gases <\/td>\n<\/tr>\n
86<\/td>\n4. Thermal Convection
Forced Convection <\/td>\n<\/tr>\n
91<\/td>\n5. Heat Exchangers
Mean Temperature Difference Analysis
NTU-Effectiveness (e) Analysis <\/td>\n<\/tr>\n
93<\/td>\nPlate Heat Exchangers
Heat Exchanger Transients
6. Heat Transfer Augmentation <\/td>\n<\/tr>\n
94<\/td>\nPassive Techniques <\/td>\n<\/tr>\n
98<\/td>\nActive Techniques <\/td>\n<\/tr>\n
100<\/td>\n7. Symbols <\/td>\n<\/tr>\n
101<\/td>\nGreek
Subscripts
References <\/td>\n<\/tr>\n
104<\/td>\nBibliography
Fins
Heat Exchangers <\/td>\n<\/tr>\n
105<\/td>\nHeat Transfer, General <\/td>\n<\/tr>\n
106<\/td>\nCHAPTER 5 – TWO-PHASE FLOW
1. Boiling
Boiling and Pool Boiling in Natural Convection Systems <\/td>\n<\/tr>\n
109<\/td>\nMaximum Heat Flux and Film Boiling
Boiling\/Evaporation in Tube Bundles
Forced-Convection Evaporation in Tubes <\/td>\n<\/tr>\n
115<\/td>\nBoiling in Plate Heat Exchangers (PHEs) <\/td>\n<\/tr>\n
116<\/td>\n2. Condensing
Condensation on Inner Surface of Tubes <\/td>\n<\/tr>\n
120<\/td>\nOther Impurities
3. Pressure Drop
Friedel Correlation <\/td>\n<\/tr>\n
121<\/td>\nLockhart and Martinelli Correlation
Gr\u00f6nnerud Correlation
M\u00fcller-Steinhagen and Heck Correlation
Wallis Correlation <\/td>\n<\/tr>\n
122<\/td>\nRecommendations
Pressure Drop in Microchannels <\/td>\n<\/tr>\n
123<\/td>\nPressure Drop in Plate Heat Exchangers <\/td>\n<\/tr>\n
125<\/td>\n4. Symbols <\/td>\n<\/tr>\n
127<\/td>\nReferences <\/td>\n<\/tr>\n
131<\/td>\nBibliography <\/td>\n<\/tr>\n
132<\/td>\nCHAPTER 6 – MASS TRANSFER
1. Molecular Diffusion
Fick\u2019s Law
Fick\u2019s Law for Dilute Mixtures <\/td>\n<\/tr>\n
133<\/td>\nFick\u2019s Law for Mass Diffusion Through Solids or Stagnant Fluids (Stationary Media)
Fick\u2019s Law for Ideal Gases with Negligible Temperature Gradient
Diffusion Coefficient <\/td>\n<\/tr>\n
134<\/td>\nDiffusion of One Gas Through a Second Stagnant Gas <\/td>\n<\/tr>\n
135<\/td>\nEquimolar Counterdiffusion
Molecular Diffusion in Liquids and Solids <\/td>\n<\/tr>\n
136<\/td>\n2. Convection of Mass
Mass Transfer Coefficient <\/td>\n<\/tr>\n
137<\/td>\nAnalogy Between Convective Heat and Mass Transfer <\/td>\n<\/tr>\n
140<\/td>\nLewis Relation <\/td>\n<\/tr>\n
141<\/td>\n3. Simultaneous Heat and Mass Transfer Between Water-Wetted Surfaces and Air
Enthalpy Potential
Basic Equations for Direct-Contact Equipment <\/td>\n<\/tr>\n
143<\/td>\nAir Washers <\/td>\n<\/tr>\n
144<\/td>\nCooling Towers
Cooling and Dehumidifying Coils <\/td>\n<\/tr>\n
145<\/td>\n4. Symbols <\/td>\n<\/tr>\n
146<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
148<\/td>\nCHAPTER 7 – FUNDAMENTALS OF CONTROL
1. GENERAL
1.1 Terminology <\/td>\n<\/tr>\n
149<\/td>\n1.2 Types of Control Action
Two-Position Action <\/td>\n<\/tr>\n
150<\/td>\nModulating Control <\/td>\n<\/tr>\n
151<\/td>\nCombinations of Two-Position and Modulating
1.3 Classification of Control Components by Energy Source
Computers for Automatic Control
2. CONTROL COMPONENTS
2.1 Control Devices
Valves <\/td>\n<\/tr>\n
153<\/td>\nDampers <\/td>\n<\/tr>\n
155<\/td>\nPneumatic Positive (Pilot) Positioners <\/td>\n<\/tr>\n
156<\/td>\n2.2 Sensors and Transmitters
Temperature Sensors
Humidity Sensors and Transmitters <\/td>\n<\/tr>\n
157<\/td>\nPressure Transmitters and Transducers
Flow Rate Sensors
Indoor Air Quality Sensors
Lighting Level Sensors
Power Sensing and Transmission
Time Switches
3.4 Specifying Building Automation System Networks <\/td>\n<\/tr>\n
158<\/td>\n2.3 Controllers
Digital Controllers
Electric\/Electronic Controllers <\/td>\n<\/tr>\n
159<\/td>\nPneumatic Receiver-Controllers
Thermostats
2.4 Auxiliary Control Devices
Relays <\/td>\n<\/tr>\n
160<\/td>\nEquipment Status
Other Switches
Transducers <\/td>\n<\/tr>\n
161<\/td>\nOther Auxiliary Control Devices
3. COMMUNICATION NETWORKS FOR BUILDING AUTOMATION SYSTEMS <\/td>\n<\/tr>\n
162<\/td>\n3.1 Communication Protocols
3.2 OSI Network Model
3.3 Network Structure
BAS Three-Tier Network Architecture <\/td>\n<\/tr>\n
163<\/td>\nConnections Between BAS Networks and Other Computer Networks
Transmission Media <\/td>\n<\/tr>\n
165<\/td>\nCommunication Tasks
3.5 Approaches to Interoperability
Standard Protocols
Gateways and Interfaces
4. SPECIFYING BUILDING AUTOMATION SYSTEMS <\/td>\n<\/tr>\n
166<\/td>\n5. COMMISSIONING
5.1 Tuning
Tuning Proportional, PI, and PID Controllers <\/td>\n<\/tr>\n
167<\/td>\nTuning Digital Controllers <\/td>\n<\/tr>\n
168<\/td>\nComputer Modeling of Control Systems
5.2 Codes and Standards
References
Bibliography <\/td>\n<\/tr>\n
170<\/td>\nCHAPTER 8 – SOUND AND VIBRATION
1. Acoustical Design Objective
2. Characteristics of Sound
Levels
Sound Pressure and Sound Pressure Level <\/td>\n<\/tr>\n
171<\/td>\nFrequency
Speed
Wavelength
Sound Power and Sound Power Level
Sound Intensity and Sound Intensity Level <\/td>\n<\/tr>\n
172<\/td>\nCombining Sound Levels
Resonances
Absorption and Reflection of Sound <\/td>\n<\/tr>\n
173<\/td>\nRoom Acoustics
Acoustic Impedance
3. Measuring Sound
Instrumentation
Time Averaging
Spectra and Analysis Bandwidths <\/td>\n<\/tr>\n
175<\/td>\nSound Measurement Basics
Measurement of Room Sound Pressure Level <\/td>\n<\/tr>\n
176<\/td>\nMeasurement of Acoustic Intensity
4. Determining Sound Power
Free-Field Method
Reverberation Room Method <\/td>\n<\/tr>\n
177<\/td>\nProgressive Wave (In-Duct) Method
Sound Intensity Method
Measurement Bandwidths for Sound Power
5. Converting from Sound Power to Sound Pressure <\/td>\n<\/tr>\n
178<\/td>\n6. Sound Transmission Paths
Spreading Losses
Direct Versus Reverberant Fields
Airborne Transmission
Ductborne Transmission <\/td>\n<\/tr>\n
179<\/td>\nRoom-to-Room Transmission
Structureborne Transmission
Flanking Transmission
7. Typical Sources of Sound
Source Strength
Directivity of Sources
Acoustic Nearfield <\/td>\n<\/tr>\n
180<\/td>\n8. Controlling Sound
Terminology
Enclosures and Barriers
Partitions <\/td>\n<\/tr>\n
182<\/td>\nSound Attenuation in Ducts and Plenums
Standards for Testing Duct Silencers
9. System Effects <\/td>\n<\/tr>\n
183<\/td>\n10. Human Response to Sound
Noise
Predicting Human Response to Sound
Sound Quality
Loudness <\/td>\n<\/tr>\n
184<\/td>\nAcceptable Frequency Spectrum
11. Sound Rating Systems and Acoustical Design Goals <\/td>\n<\/tr>\n
185<\/td>\nA-Weighted Sound Level (dBA)
Noise Criteria (NC) Method
Room Criterion (RC) Method
Criteria Selection Guidelines <\/td>\n<\/tr>\n
186<\/td>\n12. Fundamentals of Vibration
Single-Degree-of-Freedom Model
Mechanical Impedance
Natural Frequency <\/td>\n<\/tr>\n
187<\/td>\nPractical Application for Nonrigid Foundations
13. Vibration Measurement Basics <\/td>\n<\/tr>\n
188<\/td>\n14. Symbols <\/td>\n<\/tr>\n
189<\/td>\nReferences <\/td>\n<\/tr>\n
190<\/td>\nBibliography <\/td>\n<\/tr>\n
192<\/td>\nCHAPTER 9 – THERMAL COMFORT
1. Human Thermoregulation <\/td>\n<\/tr>\n
193<\/td>\n2. Energy Balance
3. Thermal Exchanges with Environment <\/td>\n<\/tr>\n
194<\/td>\nBody Surface Area
Sensible Heat Loss from Skin
Evaporative Heat Loss from Skin <\/td>\n<\/tr>\n
195<\/td>\nRespiratory Losses
Alternative Formulations <\/td>\n<\/tr>\n
196<\/td>\nTotal Skin Heat Loss <\/td>\n<\/tr>\n
197<\/td>\n4. Engineering Data and Measurements
Metabolic Rate and Mechanical Efficiency <\/td>\n<\/tr>\n
198<\/td>\nHeat Transfer Coefficients <\/td>\n<\/tr>\n
199<\/td>\nClothing Insulation and Permeation Efficiency <\/td>\n<\/tr>\n
201<\/td>\nTotal Evaporative Heat Loss
Environmental Parameters <\/td>\n<\/tr>\n
203<\/td>\n5. Conditions for Thermal Comfort <\/td>\n<\/tr>\n
204<\/td>\nThermal Complaints <\/td>\n<\/tr>\n
205<\/td>\n6. Thermal Comfort and Task Performance
7. Thermal Nonuniform Conditions and Local Discomfort
Asymmetric Thermal Radiation <\/td>\n<\/tr>\n
206<\/td>\nDraft
Vertical Air Temperature Difference <\/td>\n<\/tr>\n
207<\/td>\nWarm or Cold Floors <\/td>\n<\/tr>\n
208<\/td>\n8. Secondary Factors Affecting Comfort
Day-to-Day Variations
Age
Adaptation
Sex
Seasonal and Circadian Rhythms
9. Prediction of Thermal Comfort
Steady-State Energy Balance <\/td>\n<\/tr>\n
209<\/td>\nTwo-Node Model <\/td>\n<\/tr>\n
211<\/td>\nMultisegment Thermal Physiology and Comfort Models
Adaptive Models
Zones of Comfort and Discomfort <\/td>\n<\/tr>\n
212<\/td>\n10. Environmental Indices
Effective Temperature
Humid Operative Temperature
Heat Stress Index <\/td>\n<\/tr>\n
213<\/td>\nIndex of Skin Wettedness
Wet-Bulb Globe Temperature <\/td>\n<\/tr>\n
214<\/td>\nWet-Globe Temperature
Wind Chill Index
11. Special Environments
Infrared Heating <\/td>\n<\/tr>\n
216<\/td>\nComfort Equations for Radiant Heating <\/td>\n<\/tr>\n
217<\/td>\nPersonal Environmental Control (PEC) Systems
Hot and Humid Environments <\/td>\n<\/tr>\n
218<\/td>\nExtremely Cold Environments <\/td>\n<\/tr>\n
219<\/td>\n12. Symbols <\/td>\n<\/tr>\n
220<\/td>\nCodes and Standards <\/td>\n<\/tr>\n
221<\/td>\nReferences <\/td>\n<\/tr>\n
224<\/td>\nBibliography <\/td>\n<\/tr>\n
226<\/td>\nCHAPTER 10 – INDOOR ENVIRONMENTAL HEALTH
1. Background <\/td>\n<\/tr>\n
228<\/td>\n1.1 Health Sciences Relevant to Indoor Environment
Epidemiology and Biostatistics
Industrial, Occupational, and Environmental Medicine or Hygiene
Microbiology
Toxicology <\/td>\n<\/tr>\n
229<\/td>\n1.2 Hazard Recognition, Analysis, and Control
Hazard Control
2. Airborne Contaminants <\/td>\n<\/tr>\n
230<\/td>\n2.1 Particles
Industrial Environments
Climate Change
3.6 Outdoor Air Ventilation and Health <\/td>\n<\/tr>\n
231<\/td>\nSynthetic Vitreous Fibers
Combustion Nuclei
Particles in Nonindustrial Environments <\/td>\n<\/tr>\n
232<\/td>\nBioaerosols <\/td>\n<\/tr>\n
234<\/td>\n2.2 Gaseous Contaminants
Industrial Environments <\/td>\n<\/tr>\n
236<\/td>\nNonindustrial Environments <\/td>\n<\/tr>\n
241<\/td>\n3. Physical Agents
3.1 Thermal Environment
Range of Healthy Living Conditions <\/td>\n<\/tr>\n
242<\/td>\nHypothermia
Hyperthermia
Seasonal Patterns
Increased Deaths in Heat Waves <\/td>\n<\/tr>\n
243<\/td>\nEffects of Thermal Environment on Specific Diseases <\/td>\n<\/tr>\n
244<\/td>\nInjury from Hot and Cold Surfaces
3.2 Electrical Hazards
3.3 Mechanical Energies
Vibration
Standard Limits <\/td>\n<\/tr>\n
245<\/td>\nSound and Noise <\/td>\n<\/tr>\n
246<\/td>\n3.4 Electromagnetic Radiation
Ionizing Radiation <\/td>\n<\/tr>\n
247<\/td>\nNonionizing Radiation <\/td>\n<\/tr>\n
248<\/td>\n3.5 Ergonomics <\/td>\n<\/tr>\n
249<\/td>\nReferences <\/td>\n<\/tr>\n
255<\/td>\nBibliography <\/td>\n<\/tr>\n
256<\/td>\nCHAPTER 11 – AIR CONTAMINANTS
1. Classes of Air Contaminants <\/td>\n<\/tr>\n
257<\/td>\n2. Particulate Contaminants
2.1 Particulate Matter
Solid Particles
Liquid Particles
Complex Particles
Sizes of Airborne Particles <\/td>\n<\/tr>\n
259<\/td>\nParticle Size Distribution <\/td>\n<\/tr>\n
260<\/td>\nUnits of Measurement
Harmful Effects of Particulate Contaminants
Measurement of Airborne Particles <\/td>\n<\/tr>\n
261<\/td>\nTypical Particle Levels
Bioaerosols <\/td>\n<\/tr>\n
263<\/td>\nControlling Exposures to Particulate Matter
3. Gaseous Contaminants <\/td>\n<\/tr>\n
265<\/td>\nHarmful Effects of Gaseous Contaminants
Units of Measurement <\/td>\n<\/tr>\n
267<\/td>\nMeasurement of Gaseous Contaminants <\/td>\n<\/tr>\n
268<\/td>\n3.1 Volatile Organic Compounds <\/td>\n<\/tr>\n
270<\/td>\nControlling Exposure to VOCs
3.2 Semivolatile Organic Compounds
3.3 Inorganic Gases <\/td>\n<\/tr>\n
271<\/td>\nControlling Exposures to Inorganic Gases
4. Air Contaminants by Source
4.1 Outdoor Air Contaminants <\/td>\n<\/tr>\n
272<\/td>\n4.2 Industrial Air Contaminants <\/td>\n<\/tr>\n
273<\/td>\n4.3 Commercial, Institutional, and Residential Indoor Air Contaminants <\/td>\n<\/tr>\n
275<\/td>\n4.4 Flammable Gases and Vapors
4.5 Combustible Dusts <\/td>\n<\/tr>\n
276<\/td>\n4.6 Radioactive Air Contaminants
Radon <\/td>\n<\/tr>\n
277<\/td>\n4.7 Soil Gases
References <\/td>\n<\/tr>\n
280<\/td>\nBibliography <\/td>\n<\/tr>\n
282<\/td>\nCHAPTER 12 – ODORS
1. Odor Sources
2. Sense of Smell
Olfactory Stimuli <\/td>\n<\/tr>\n
283<\/td>\nAnatomy and Physiology
Olfactory Acuity
3. Factors Affecting Odor Perception
Humidity and Temperature
Sorption and Release of Odors
Emotional Responses to Odors <\/td>\n<\/tr>\n
284<\/td>\n4. Odor Sensation Attributes
Detectability
Intensity <\/td>\n<\/tr>\n
285<\/td>\nCharacter <\/td>\n<\/tr>\n
286<\/td>\nHedonics
5. Dilution of Odors by Ventilation
6. Odor Concentration
Analytical Measurement
Odor Units <\/td>\n<\/tr>\n
287<\/td>\n7. Olf Units
References <\/td>\n<\/tr>\n
289<\/td>\nBibliography <\/td>\n<\/tr>\n
290<\/td>\nCHAPTER 13 – INDOOR ENVIRONMENTAL MODELING
1. Computational Fluid Dynamics
Mathematical and Numerical Background <\/td>\n<\/tr>\n
292<\/td>\nReynolds-Averaged Navier-Stokes (RANS) Approaches
Large Eddy Simulation (LES) <\/td>\n<\/tr>\n
293<\/td>\nDirection Numerical Simulation (DNS)
1.1 Meshing for Computational Fluid Dynamics
Structured Grids <\/td>\n<\/tr>\n
294<\/td>\nUnstructured Grids
Grid Quality
Immersed Boundary Grid Generation
Grid Independence <\/td>\n<\/tr>\n
295<\/td>\n1.2 Boundary Conditions for Computational Fluid Dynamics
Inlet Boundary Conditions <\/td>\n<\/tr>\n
296<\/td>\nOutlet Boundary Conditions
Wall\/Surface Boundary Conditions <\/td>\n<\/tr>\n
297<\/td>\nSymmetry Surface Boundary Conditions <\/td>\n<\/tr>\n
298<\/td>\nFixed Sources and Sinks
Modeling Considerations
1.3 CFD Modeling Approaches
Planning
Dimensional Accuracy and Faithfulness to Details
CFD Simulation Steps
1.4 Verification, Validation, and Reporting Results <\/td>\n<\/tr>\n
299<\/td>\nVerification <\/td>\n<\/tr>\n
301<\/td>\nValidation <\/td>\n<\/tr>\n
302<\/td>\nReporting CFD Results <\/td>\n<\/tr>\n
303<\/td>\n2. Multizone Network Airflow and Contaminant Transport Modeling
2.1 Multizone Airflow Modeling
Theory <\/td>\n<\/tr>\n
304<\/td>\nSolution Techniques <\/td>\n<\/tr>\n
305<\/td>\n2.2 Contaminant Transport Modeling
Fundamentals
Solution Techniques
2.3 Multizone Modeling Approaches
Simulation Planning
Steps <\/td>\n<\/tr>\n
306<\/td>\n2.4 Verification and Validation
Analytical Verification <\/td>\n<\/tr>\n
307<\/td>\nIntermodel Comparison
Empirical Validation <\/td>\n<\/tr>\n
309<\/td>\n2.5 Symbols <\/td>\n<\/tr>\n
310<\/td>\nReferences <\/td>\n<\/tr>\n
312<\/td>\nBibliography <\/td>\n<\/tr>\n
313<\/td>\nCHAPTER 14 – CLIMATIC DESIGN INFORMATION
1. Climatic Design Conditions
Annual Design Conditions <\/td>\n<\/tr>\n
314<\/td>\nMonthly Design Conditions <\/td>\n<\/tr>\n
315<\/td>\nData Sources <\/td>\n<\/tr>\n
317<\/td>\nCalculation of Design Conditions <\/td>\n<\/tr>\n
318<\/td>\nDifferences from Previously Published Design Conditions
Applicability and Characteristics of Design Conditions <\/td>\n<\/tr>\n
320<\/td>\n2. Calculating Clear-sky Solar Radiation
Solar Constant and Extraterrestrial Solar Radiation
Equation of Time and Solar Time <\/td>\n<\/tr>\n
321<\/td>\nDeclination
Sun Position <\/td>\n<\/tr>\n
322<\/td>\nAir Mass
Clear-Sky Solar Radiation
3. Transposition to Receiving Surfaces of Various Orientations <\/td>\n<\/tr>\n
323<\/td>\nSolar Angles Related to Receiving Surfaces
Calculation of Clear-Sky Solar Irradiance Incident On Receiving Surface <\/td>\n<\/tr>\n
324<\/td>\n4. Generating Design-Day Data
5. Estimation of Degree-Days
Monthly Degree-Days <\/td>\n<\/tr>\n
325<\/td>\nAnnual Degree-Days
6. Representativeness of Data and Sources of Uncertainty
Representativeness of Data <\/td>\n<\/tr>\n
326<\/td>\nUncertainty from Variation in Length of Record <\/td>\n<\/tr>\n
327<\/td>\nEffects of Climate Change <\/td>\n<\/tr>\n
328<\/td>\nEpisodes Exceeding the Design Dry-Bulb Temperature
7. Other Sources of Climatic Information
Joint Frequency Tables of Psychrometric Conditions <\/td>\n<\/tr>\n
329<\/td>\nDegree Days and Climate Normals
Typical Year Data Sets
Sequences of Extreme Temperature and Humidity Durations <\/td>\n<\/tr>\n
330<\/td>\nGlobal Weather Data Source Web Page
Observational Data Sets
References <\/td>\n<\/tr>\n
331<\/td>\nBibliography <\/td>\n<\/tr>\n
361<\/td>\nCHAPTER 15 – FENESTRATION
1. Fenestration Components
1.1 Glazing Units <\/td>\n<\/tr>\n
362<\/td>\n1.2 Framing <\/td>\n<\/tr>\n
363<\/td>\n1.3 Shading
2. Determining Fenestration Energy Flow <\/td>\n<\/tr>\n
364<\/td>\n3. U-Factor (Thermal Transmittance)
Comparison Between Area-Weighted and Length-Weighted Methods <\/td>\n<\/tr>\n
365<\/td>\n3.1 Determining Fenestration U-Factors
Center-of-Glass U-Factor
Edge-of-Glass U-Factor
Frame U-Factor <\/td>\n<\/tr>\n
366<\/td>\nCurtain Wall Construction
3.2 Surface and Cavity Heat Transfer Coefficients <\/td>\n<\/tr>\n
373<\/td>\n3.3 Representative U-Factors for Doors <\/td>\n<\/tr>\n
374<\/td>\n4. Solar Heat Gain and Visible Transmittance
4.1 Solar-Optical Properties of Glazing
Optical Properties of Single Glazing Layers <\/td>\n<\/tr>\n
376<\/td>\nOptical Properties of Glazing Systems <\/td>\n<\/tr>\n
379<\/td>\n4.2 Solar Heat Gain Coefficient
Calculation of Solar Heat Gain Coefficient <\/td>\n<\/tr>\n
380<\/td>\nDiffuse Radiation
Solar Gain Through Frame and Other Opaque Elements <\/td>\n<\/tr>\n
381<\/td>\nSolar Heat Gain Coefficient, Visible Transmittance, and Spectrally Averaged Solar-Optical Property Values
Airflow Windows
Skylights <\/td>\n<\/tr>\n
392<\/td>\nGlass Block Walls
Plastic Materials for Glazing
4.3 Calculation of Solar Heat Gain <\/td>\n<\/tr>\n
393<\/td>\nOpaque Fenestration Elements
5. Shading and Fenestration Attachments
5.1 Shading <\/td>\n<\/tr>\n
394<\/td>\nOverhangs and Glazing Unit Recess: Horizontal and Vertical Projections <\/td>\n<\/tr>\n
395<\/td>\n5.2 Fenestration Attachments
Simplified Methodology
Slat-Type Sunshades <\/td>\n<\/tr>\n
397<\/td>\nDrapery <\/td>\n<\/tr>\n
398<\/td>\nRoller Shades and Insect Screens
6. Visual and Thermal Controls
Operational Effectiveness of Shading Devices
Indoor Shading Devices <\/td>\n<\/tr>\n
413<\/td>\nDouble Drapery
7. Air Leakage
Infiltration Through Fenestration <\/td>\n<\/tr>\n
414<\/td>\nIndoor Air Movement
8. Daylighting
8.1 Daylight Prediction <\/td>\n<\/tr>\n
416<\/td>\n8.2 Light Transmittance and Daylight Use <\/td>\n<\/tr>\n
417<\/td>\n9. Selecting Fenestration
9.1 Annual Energy Performance
Simplified Techniques for Rough Estimates of Fenestration Annual Energy Performance <\/td>\n<\/tr>\n
418<\/td>\nSimplified Residential Annual Energy Performance Ratings
9.2 Condensation Resistance <\/td>\n<\/tr>\n
420<\/td>\n9.3 Occupant Comfort and Acceptance <\/td>\n<\/tr>\n
421<\/td>\nSound Reduction
Strength and Safety
Life-Cycle Costs <\/td>\n<\/tr>\n
422<\/td>\n9.4 Durability
9.5 Supply and Exhaust Airflow Windows
9.6 Codes and Standards
National Fenestration Rating Council (NFRC) <\/td>\n<\/tr>\n
423<\/td>\nUnited States Energy Policy Act (EPAct)
ICC\u2019s 2015 International Energy Conservation Code
ASHRAE\/IES Standard 90.1-2016
ASHRAE\/USGBC\/IES Standard 189.1-2014 <\/td>\n<\/tr>\n
424<\/td>\nICC\u2019s 2015 International Green Construction Code\u2122
Canadian Standards Association (CSA)
Building Code of Australia\/National Construction Code
Complex Glazings and Window Coverings
9.7 Symbols
References <\/td>\n<\/tr>\n
428<\/td>\nBibliography <\/td>\n<\/tr>\n
429<\/td>\nCHAPTER 16 – VENTILATION AND INFILTRATION
Sustainable Building Standards and Rating Systems
1. Basic Concepts and Terminology
Ventilation and Infiltration <\/td>\n<\/tr>\n
430<\/td>\nVentilation Air
Forced-Air Distribution Systems <\/td>\n<\/tr>\n
431<\/td>\nOutdoor Air Fraction
Room Air Movement <\/td>\n<\/tr>\n
432<\/td>\nAir Change Rate
Time Constants
Averaging Time-Varying Ventilation Rates <\/td>\n<\/tr>\n
433<\/td>\nAge of Air
Air Change Effectiveness
2. Tracer Gas Measurements <\/td>\n<\/tr>\n
434<\/td>\nDecay or Growth
Constant Concentration
Constant Injection <\/td>\n<\/tr>\n
435<\/td>\nMultizone Air Change Measurement
3. Driving Mechanisms for Ventilation and Infiltration
Stack Pressure
Wind Pressure <\/td>\n<\/tr>\n
436<\/td>\nMechanical Systems <\/td>\n<\/tr>\n
437<\/td>\nCombining Driving Forces
Neutral Pressure Level <\/td>\n<\/tr>\n
438<\/td>\nThermal Draft Coefficient <\/td>\n<\/tr>\n
439<\/td>\n4. Indoor Air Quality
Protection from Extraordinary Events
5. Thermal Loads <\/td>\n<\/tr>\n
440<\/td>\nEffect on Envelope Insulation <\/td>\n<\/tr>\n
441<\/td>\nInfiltration Degree-Days
6. Natural Ventilation
Natural Ventilation Openings
Ceiling Heights
Required Flow for Indoor Temperature Control
Airflow Through Large Intentional Openings
Flow Caused by Wind Only <\/td>\n<\/tr>\n
442<\/td>\nFlow Caused by Thermal Forces Only
Natural Ventilation Guidelines <\/td>\n<\/tr>\n
443<\/td>\nHybrid Ventilation
7. Residential Air Leakage
Envelope Leakage Measurement <\/td>\n<\/tr>\n
444<\/td>\nAirtightness Ratings
Conversion Between Ratings
Building Air Leakage Data <\/td>\n<\/tr>\n
445<\/td>\nAir Leakage of Building Components
Leakage Distribution <\/td>\n<\/tr>\n
446<\/td>\nMultifamily Building Leakage
Controlling Air Leakage
8. Residential Ventilation <\/td>\n<\/tr>\n
448<\/td>\nShelter in Place
Safe Havens
9. Residential IAQ Control <\/td>\n<\/tr>\n
449<\/td>\nSource Control
Local Exhaust <\/td>\n<\/tr>\n
450<\/td>\nWhole-House Ventilation
Air Distribution
Selection Principles for Residential Ventilation Systems <\/td>\n<\/tr>\n
451<\/td>\n10. Simplified Models of Residential Ventilation and Infiltration
Empirical Models
Multizone Models
Single-Zone Models
Superposition of Wind and Stack Effects <\/td>\n<\/tr>\n
452<\/td>\nResidential Calculation Examples <\/td>\n<\/tr>\n
453<\/td>\nCombining Residential Infiltration and Mechanical Ventilation <\/td>\n<\/tr>\n
454<\/td>\nTypical Practice
11. Commercial and Institutional Air Leakage
Envelope Leakage <\/td>\n<\/tr>\n
455<\/td>\nAir Leakage Through Internal Partitions
Air Leakage Through Exterior Doors <\/td>\n<\/tr>\n
456<\/td>\nAir Leakage Through Automatic Doors <\/td>\n<\/tr>\n
457<\/td>\nAir Exchange Through Air Curtains
12. Commercial and Institutional Ventilation <\/td>\n<\/tr>\n
458<\/td>\nVentilation Rate Procedure
Multiple Spaces
Survey of Ventilation Rates in Office Buildings
13. Office Building Example
Location
Building <\/td>\n<\/tr>\n
459<\/td>\nOccupancy
Infiltration
Local Exhausts <\/td>\n<\/tr>\n
460<\/td>\nVentilation <\/td>\n<\/tr>\n
461<\/td>\n14. Symbols
References <\/td>\n<\/tr>\n
467<\/td>\nBibliography <\/td>\n<\/tr>\n
469<\/td>\nCHAPTER 17 – RESIDENTIAL COOLING AND HEATING LOAD CALCULATIONS
1. Residential Features
2. Calculation Approach <\/td>\n<\/tr>\n
470<\/td>\n3. Other Methods
4. Residential Heat Balance (RHB) Method
5. Residential Load Factor (RLF) Method
6. Common Data and Procedures <\/td>\n<\/tr>\n
471<\/td>\nGeneral Guidelines
Basic Relationships
Design Conditions <\/td>\n<\/tr>\n
472<\/td>\nBuilding Data
Load Components <\/td>\n<\/tr>\n
476<\/td>\n7. Cooling Load
Peak Load Computation
Opaque Surfaces <\/td>\n<\/tr>\n
477<\/td>\nSlab Floors
Surfaces Adjacent to Buffer Space
Transparent Fenestration Surfaces <\/td>\n<\/tr>\n
478<\/td>\nInfiltration and Ventilation
Internal Gain
Air Distribution System: Heat Gain
Total Latent Load <\/td>\n<\/tr>\n
479<\/td>\nSummary of RLF Cooling Load Equations
8. Heating Load
Exterior Surfaces Above Grade
Below-Grade and On-Grade Surfaces
Surfaces Adjacent to Buffer Space
Ventilation and Infiltration <\/td>\n<\/tr>\n
480<\/td>\nHumidification
Pickup Load
Summary of Heating Load Procedures
9. Load Calculation Example
Solution <\/td>\n<\/tr>\n
482<\/td>\n10. Symbols <\/td>\n<\/tr>\n
483<\/td>\nReferences <\/td>\n<\/tr>\n
485<\/td>\nCHAPTER 18 – NONRESIDENTIAL COOLING AND HEATING LOAD CALCULATIONS
1. Cooling Load Calculation Principles
1.1 Terminology
Heat Flow Rates <\/td>\n<\/tr>\n
486<\/td>\nTime Delay Effect
1.2 Cooling Load Calculation Methods
Cooling Load Calculations in Practice <\/td>\n<\/tr>\n
487<\/td>\n1.3 Data Assembly
2. Internal Heat Gains
2.1 People
2.2 Lighting
Instantaneous Heat Gain from Lighting <\/td>\n<\/tr>\n
490<\/td>\n2.3 Electric Motors <\/td>\n<\/tr>\n
491<\/td>\nOverloading or Underloading
Radiation and Convection
2.4 Appliances
Cooking Appliances <\/td>\n<\/tr>\n
495<\/td>\nHospital and Laboratory Equipment
Office Equipment <\/td>\n<\/tr>\n
498<\/td>\n3. Infiltration and Moisture Migration Heat Gains
3.1 Infiltration <\/td>\n<\/tr>\n
499<\/td>\nStandard Air Volumes
Heat Gain Calculations Using Standard Air Values
Elevation Correction Examples
3.2 Latent Heat Gain from Moisture Diffusion <\/td>\n<\/tr>\n
500<\/td>\n3.3 Other Latent Loads
4. Fenestration Heat Gain
4.1 Fenestration Direct Solar , Diffuse Solar , and Conductive Heat Gains
4.2 Exterior Shading
5. Heat Balance Method <\/td>\n<\/tr>\n
501<\/td>\n5.1 Assumptions
5.2 Elements
Outdoor-Face Heat Balance
Wall Conduction Process <\/td>\n<\/tr>\n
502<\/td>\nIndoor-Face Heat Balance
Using SHGC to Calculate Solar Heat Gain <\/td>\n<\/tr>\n
503<\/td>\nAir Heat Balance <\/td>\n<\/tr>\n
504<\/td>\n5.3 General Zone for Load Calculation
5.4 Mathematical Description
Conduction Process
Heat Balance Equations <\/td>\n<\/tr>\n
505<\/td>\nOverall HB Iterative Solution
5.5 Input Required <\/td>\n<\/tr>\n
506<\/td>\n6. Radiant Time Series (RTS) Method
6.1 Assumptions and Principles
6.2 Overview <\/td>\n<\/tr>\n
508<\/td>\n6.3 RTS Procedure
6.4 Heat Gain Through Exterior Surfaces
Sol-Air Temperature <\/td>\n<\/tr>\n
509<\/td>\nCalculating Conductive Heat Gain Using Conduction Time Series
6.5 Heat Gain Through Interior Surfaces
Floors
6.6 Calculating Cooling Load <\/td>\n<\/tr>\n
514<\/td>\n7. Heating Load Calculations <\/td>\n<\/tr>\n
516<\/td>\n7.1 Heat Loss Calculations
Outdoor Design Conditions <\/td>\n<\/tr>\n
517<\/td>\nIndoor Design Conditions <\/td>\n<\/tr>\n
519<\/td>\nCalculation of Transmission Heat Losses <\/td>\n<\/tr>\n
524<\/td>\nInfiltration
7.2 Heating Safety Factors and Load Allowances
7.3 Other Heating Considerations <\/td>\n<\/tr>\n
525<\/td>\n8. System Heating and Cooling Load Effects
8.1 Zoning
8.2 Ventilation
8.3 Air Heat Transport Systems
On\/Off Control Systems
Variable-Air-Volume Systems
Constant-Air-Volume Reheat Systems
Mixed Air Systems <\/td>\n<\/tr>\n
526<\/td>\nHeat Gain from Fans
Duct Surface Heat Transfer
Duct Leakage <\/td>\n<\/tr>\n
527<\/td>\nCeiling Return Air Plenum Temperatures
Ceiling Plenums with Ducted Returns <\/td>\n<\/tr>\n
528<\/td>\nUnderfloor Air Distribution Systems
Plenums in Load Calculations
8.4 Central Plant
Piping
Pumps
9. Example Cooling and Heating Load Calculations
9.1 Single-Room Example <\/td>\n<\/tr>\n
530<\/td>\nRoom Characteristics <\/td>\n<\/tr>\n
531<\/td>\nCooling Loads Using RTS Method <\/td>\n<\/tr>\n
538<\/td>\n9.2 Single-Room Example Peak Heating Load
9.3 Whole-Building Example <\/td>\n<\/tr>\n
539<\/td>\nDesign Process and Shell Building Definition <\/td>\n<\/tr>\n
540<\/td>\nTenant Fit Design Process and Definition <\/td>\n<\/tr>\n
541<\/td>\nRoom-by-Room Cooling and Heating Loads
Conclusions
10. Previous Cooling Load Calculation Methods <\/td>\n<\/tr>\n
542<\/td>\nReferences <\/td>\n<\/tr>\n
543<\/td>\nBibliography <\/td>\n<\/tr>\n
545<\/td>\n11. Building Example Drawings <\/td>\n<\/tr>\n
551<\/td>\nCHAPTER 19 – ENERGY ESTIMATING AND MODELING METHODS
1. GENERAL CONSIDERATIONS
1.1 Models and Approaches
Forward (Classical) Approach
First-Principles Models
5.3 Passive Heating
6. Data-Driven Modeling
7. Model Calibration
7.1 Bayesian Analysis <\/td>\n<\/tr>\n
552<\/td>\nData-Driven (Inverse) Approach
1.2 Overall Modeling Strategies <\/td>\n<\/tr>\n
553<\/td>\n1.3 Simulating Secondary and Primary Systems
1.4 History of Simulation Method Development
1.5 Using Energy Models
Typical Applications <\/td>\n<\/tr>\n
554<\/td>\nChoosing Measures for Evaluation
When to Use Energy Models
Energy Modelers <\/td>\n<\/tr>\n
555<\/td>\n1.6 Uncertainty in Modeling
1.7 Choosing an Analysis Method
Selecting Energy Analysis Computer Programs <\/td>\n<\/tr>\n
556<\/td>\n2. Degree-Day and Bin Methods
2.1 Degree-Day Method <\/td>\n<\/tr>\n
557<\/td>\nVariable-Base Degree-Day Method
Sources of Degree-Day Data <\/td>\n<\/tr>\n
558<\/td>\n2.2 Bin and Modified Bin Methods
3. Thermal Loads Modeling
3.1 Space Sensible Load Calculation Methods <\/td>\n<\/tr>\n
559<\/td>\nHeat Balance Method <\/td>\n<\/tr>\n
560<\/td>\nWeighting-Factor Method <\/td>\n<\/tr>\n
561<\/td>\nComprehensive Room Transfer Function
Thermal-Network Methods <\/td>\n<\/tr>\n
562<\/td>\n3.2 Envelope Component Modeling
Above-Grade Opaque Surfaces
Below-Grade Opaque Surfaces <\/td>\n<\/tr>\n
563<\/td>\nFenestration
Infiltration
3.3 Inputs to Thermal Loads Models
Choosing Climate Data
Internal Heat Gains <\/td>\n<\/tr>\n
564<\/td>\nOccupant Behavior
Thermal Zoning Strategies <\/td>\n<\/tr>\n
565<\/td>\n4. HVAC Component Modeling
4.1 Modeling Strategies
Empirical (Regression-Based) Models <\/td>\n<\/tr>\n
566<\/td>\n4.2 Terminal Components
Terminal Units and Controls <\/td>\n<\/tr>\n
567<\/td>\nUnderfloor Air Distribution
Thermal Displacement Ventilation
Radiant Heating and Cooling Systems
4.3 Secondary System Components <\/td>\n<\/tr>\n
568<\/td>\nFans, Pumps, and Distribution Systems <\/td>\n<\/tr>\n
569<\/td>\nHeat and Mass Transfer Components <\/td>\n<\/tr>\n
570<\/td>\nApplication to Cooling and Dehumidifying Coils <\/td>\n<\/tr>\n
571<\/td>\n4.4 Primary System Components
Boilers
Chillers <\/td>\n<\/tr>\n
572<\/td>\nCooling Tower Model
Variable-Speed Vapor-Compression Heat Pump Model <\/td>\n<\/tr>\n
573<\/td>\nGround-Coupled Systems
4.5 Modeling of System Controls
4.6 Integration of System Models <\/td>\n<\/tr>\n
574<\/td>\n5. Low-Energy System Modeling
5.1 Natural and Hybrid Ventilation <\/td>\n<\/tr>\n
575<\/td>\nNatural Ventilation <\/td>\n<\/tr>\n
576<\/td>\nHybrid Ventilation
5.2 Daylighting <\/td>\n<\/tr>\n
577<\/td>\n6.1 Categories of Data-Driven Methods
Empirical or \u201cBlack-Box\u201d Approach <\/td>\n<\/tr>\n
578<\/td>\nGray-Box Approach
6.2 Types of Data-Driven Models
Steady-State Models <\/td>\n<\/tr>\n
582<\/td>\nDynamic Models <\/td>\n<\/tr>\n
583<\/td>\n6.3 Model Accuracy and Goodness of Fit
6.4 Examples Using Data-Driven Methods
Modeling Utility Bill Data
Neural Network Models <\/td>\n<\/tr>\n
584<\/td>\n6.5 Model Selection <\/td>\n<\/tr>\n
587<\/td>\n7.2 Pattern-based Approach
7.3 Multiobjective Optimization
8. Validation and Testing <\/td>\n<\/tr>\n
588<\/td>\n8.1 Methodological Basis
Empirical Validation <\/td>\n<\/tr>\n
589<\/td>\nExternal Error Types
Analytical Verification <\/td>\n<\/tr>\n
590<\/td>\nCombining Empirical, Analytical, and Comparative Techniques <\/td>\n<\/tr>\n
591<\/td>\nTesting Model Calibration Techniques Using Synthetic Data <\/td>\n<\/tr>\n
592<\/td>\nReferences <\/td>\n<\/tr>\n
600<\/td>\nBibliography <\/td>\n<\/tr>\n
605<\/td>\nCHAPTER 20 – SPACE AIR DIFFUSION <\/td>\n<\/tr>\n
606<\/td>\n1. Indoor Air Quality and Sustainability
2. Terminology
Outlet Types and Characteristics <\/td>\n<\/tr>\n
607<\/td>\n3. Principles of Jet Behavior
Air Jet Fundamentals <\/td>\n<\/tr>\n
610<\/td>\nIsothermal Radial Flow Jets
Nonisothermal Jets <\/td>\n<\/tr>\n
611<\/td>\nNonisothermal Horizontal Free Jet
Comparison of Free Jet to Attached Jet
Air Curtain Units
Multiple Jets
Air Movement in Occupied Zone <\/td>\n<\/tr>\n
612<\/td>\n4. Symbols
References <\/td>\n<\/tr>\n
613<\/td>\nBibliography <\/td>\n<\/tr>\n
615<\/td>\nCHAPTER 21 – DUCT DESIGN
Head A initial – 1. Bernoulli Equation <\/td>\n<\/tr>\n
616<\/td>\nHead B 1 with A Heads cont – 1.1 Head and Pressure
Head C – Static Pressure
Head C – Velocity Pressure
Head C – Total Pressure
Head C – Pressure Measurement
Head A cont – 2. System Analysis <\/td>\n<\/tr>\n
619<\/td>\nHead B 1 with A Heads cont – 2.1 Pressure Changes in System <\/td>\n<\/tr>\n
620<\/td>\nHead A cont – 3. Fluid Resistance
Head B 1 with A Heads cont – 3.1 Friction Losses
Head C – Darcy and Colebrook Equations
Head C – Roughness Factors <\/td>\n<\/tr>\n
622<\/td>\nHead C – Friction Chart
Head C – Noncircular Ducts
Head B 1 with A Heads cont – 3.2 Dynamic Losses
Head C – Local Loss Coefficients <\/td>\n<\/tr>\n
626<\/td>\nHead C – Duct Fitting Database <\/td>\n<\/tr>\n
627<\/td>\nHead B 1 with A Heads cont – 3.3 Ductwork Sectional Losses
Head C – Darcy-Weisbach Equation
Head A cont – 4. Fan\/System Interface
Head C – Fan Inlet and Outlet Conditions
Head C – Fan System Effect Coefficients <\/td>\n<\/tr>\n
629<\/td>\nHead A cont – 5. Mechanical Equipment Rooms
Head C – Outdoor Air Intake and Exhaust Air Discharge Locations
Head C – Equipment Room Locations
Head A cont – 6. Duct Design
Head B 1 with A Heads cont – 6.1 Design Considerations
Head C – HVAC System Air Leakage <\/td>\n<\/tr>\n
632<\/td>\nHead C – Fire and Smoke Control
Head C – Duct Insulation
Head C – Physical Security
Head C – Louvers <\/td>\n<\/tr>\n
633<\/td>\nHead C – Duct Shape Selection <\/td>\n<\/tr>\n
635<\/td>\nHead C – Testing and Balancing
Head B 1 with A Heads cont – 6.2 Design Recommendations <\/td>\n<\/tr>\n
637<\/td>\nHead B 1 with A Heads cont – 6.3 Design Methods <\/td>\n<\/tr>\n
638<\/td>\nHead C – Noise Control
Head C – Goals
Head C – Design Method to Use <\/td>\n<\/tr>\n
643<\/td>\nHead B 1 with A Heads cont – 6.4 Industrial Exhaust Systems <\/td>\n<\/tr>\n
645<\/td>\nHead REF – References <\/td>\n<\/tr>\n
647<\/td>\nHead REF – Bibliography <\/td>\n<\/tr>\n
649<\/td>\nCHAPTER 22 – PIPE DESIGN
1. Fundamentals
1.1 Codes and Standards
1.2 Design Considerations
1.3 General Pipe Systems
Metallic Pipe Systems <\/td>\n<\/tr>\n
653<\/td>\nNonmetallic (Plastic) Pipe Systems
Special Systems
1.4 Design Equations
Darcy-Weisbach Equation <\/td>\n<\/tr>\n
654<\/td>\nHazen-Williams Equation
Valve and Fitting Losses <\/td>\n<\/tr>\n
656<\/td>\nLosses in Multiple Fittings
Calculating Pressure Losses
Stress Calculations <\/td>\n<\/tr>\n
658<\/td>\n1.5 Sizing Procedure
1.6 Pipe-Supporting Elements <\/td>\n<\/tr>\n
659<\/td>\nHanger Spacing and Pipe Wall Thickness
1.7 Pipe Expansion and Flexibility <\/td>\n<\/tr>\n
660<\/td>\n1.8 Pipe Bends and Loops
L Bends <\/td>\n<\/tr>\n
661<\/td>\nZ Bends
U Bends and Pipe Loops
Expansion and Contraction Control of Other Materials <\/td>\n<\/tr>\n
662<\/td>\nCold Springing of Pipe
Analyzing Existing Piping Configurations
2. Pipe and Fitting Materials
2.1 Pipe
Steel Pipe <\/td>\n<\/tr>\n
663<\/td>\nCopper Tube
Ductile Iron and Cast Iron
Nonmetallic (Plastic) <\/td>\n<\/tr>\n
666<\/td>\n2.2 Fittings
2.3 Joining Methods
Threading
Soldering and Brazing <\/td>\n<\/tr>\n
667<\/td>\nFlared and Compression Joints
Flanges <\/td>\n<\/tr>\n
668<\/td>\nWelding
Integrally Reinforced Outlet Fittings
Solvent Cement
Rolled-Groove Joints
Bell-and-Spigot Joints
Press-Connect (Press Fit) Joints
Push-Connect Joints
Unions
2.4 Expansion Joints and Expansion Compensating Devices <\/td>\n<\/tr>\n
669<\/td>\nPacked Expansion Joints
Packless Expansion Joints <\/td>\n<\/tr>\n
670<\/td>\n3. Applications
3.1 Water Piping
Flow Rate Limitations
Noise Generation <\/td>\n<\/tr>\n
671<\/td>\nErosion
Allowances for Aging
Water Hammer
3.2 Service Water Piping <\/td>\n<\/tr>\n
673<\/td>\nPlastic Pipe
Procedure for Sizing Cold-Water Systems <\/td>\n<\/tr>\n
674<\/td>\nHydronic System Piping
Range of Usage of Pressure Drop Charts <\/td>\n<\/tr>\n
675<\/td>\nAir Separation <\/td>\n<\/tr>\n
676<\/td>\nValve and Fitting Pressure Drop <\/td>\n<\/tr>\n
677<\/td>\n3.3 Steam Piping
Pipe Sizes
Sizing Charts <\/td>\n<\/tr>\n
681<\/td>\n3.4 Low-Pressure Steam Piping
High-Pressure Steam Piping <\/td>\n<\/tr>\n
682<\/td>\nUse of Basic and Velocity Multiplier Charts
3.5 Steam Condensate Systems
Two-Pipe Systems <\/td>\n<\/tr>\n
685<\/td>\nOne-Pipe Systems
3.6 Gas Piping <\/td>\n<\/tr>\n
686<\/td>\n3.7 Fuel Oil Piping <\/td>\n<\/tr>\n
687<\/td>\nPipe Sizes for Heavy Oil
References <\/td>\n<\/tr>\n
689<\/td>\nBibliography <\/td>\n<\/tr>\n
691<\/td>\nCHAPTER 23 – INSULATION FOR MECHANICAL SYSTEMS
1. Design Objectives and Considerations
Energy Conservation
Economic Thickness <\/td>\n<\/tr>\n
692<\/td>\nPersonnel Protection <\/td>\n<\/tr>\n
693<\/td>\nCondensation Control <\/td>\n<\/tr>\n
695<\/td>\nFreeze Prevention
Noise Control <\/td>\n<\/tr>\n
696<\/td>\nFire Safety <\/td>\n<\/tr>\n
697<\/td>\nCorrosion Under Insulation <\/td>\n<\/tr>\n
698<\/td>\n2. Materials and Systems
Categories of Insulation Materials <\/td>\n<\/tr>\n
699<\/td>\nPhysical Properties of Insulation Materials <\/td>\n<\/tr>\n
700<\/td>\nWeather Protection <\/td>\n<\/tr>\n
701<\/td>\nVapor Retarders <\/td>\n<\/tr>\n
703<\/td>\n3. Installation
Pipe Insulation <\/td>\n<\/tr>\n
705<\/td>\nTanks, Vessels, and Equipment
Ducts <\/td>\n<\/tr>\n
708<\/td>\n4. Design Data
Estimating Heat Loss and Gain <\/td>\n<\/tr>\n
709<\/td>\nControlling Surface Temperatures
5. Project Specifications
Standards <\/td>\n<\/tr>\n
712<\/td>\nReferences <\/td>\n<\/tr>\n
713<\/td>\nCHAPTER 24 – AIRFLOW AROUND BUILDINGS
1. Flow Patterns
Flow Patterns Around Isolated, Rectangular Block- Type Buildings <\/td>\n<\/tr>\n
715<\/td>\nFlow Patterns Around Building Groups <\/td>\n<\/tr>\n
716<\/td>\n2. Wind Pressure on Buildings
Approach Wind Speed
Local Wind Pressure Coefficients <\/td>\n<\/tr>\n
717<\/td>\nSurface-Averaged Wall Pressures
Roof Pressures <\/td>\n<\/tr>\n
719<\/td>\nInterference and Shielding Effects on Pressures
3. Sources of Wind Data
Wind at Recording Stations <\/td>\n<\/tr>\n
720<\/td>\nEstimating Wind at Sites Remote from Recording Stations
4. Wind Effects on System Operation
Natural and Mechanical Ventilation <\/td>\n<\/tr>\n
722<\/td>\nMinimizing Wind Effect on System Volume Flow Rate
Chemical Hood Operation
5. Building Pressure Balance and Internal Flow Control
Pressure Balance
Internal Flow Control <\/td>\n<\/tr>\n
723<\/td>\n6. Environmental Impacts of Building External Flow
Pollutant Dispersion and Exhaust Reentrainment
Pedestrian Wind Comfort and Safety
Wind-Driven Rain on Buildings <\/td>\n<\/tr>\n
724<\/td>\n7. Physical and Computational Modeling
Physical Modeling
Similarity Requirements
Wind Simulation Facilities <\/td>\n<\/tr>\n
725<\/td>\nDesigning Model Test Programs
Computational Modeling <\/td>\n<\/tr>\n
726<\/td>\n8. Symbols
References <\/td>\n<\/tr>\n
730<\/td>\nBibliography <\/td>\n<\/tr>\n
731<\/td>\nCHAPTER 25 – HEAT, AIR, AND MOISTURE CONTROL IN BUILDING ASSEMBLIES-FUNDAMENTALS
1. Fundamentals
1.1 Terminology and Symbols
Heat <\/td>\n<\/tr>\n
732<\/td>\nAir
Moisture
1.2 Hygrothermal Loads and Driving Forces <\/td>\n<\/tr>\n
733<\/td>\nAmbient Temperature and Humidity
Indoor Temperature and Humidity
Solar Radiation
Exterior Condensation <\/td>\n<\/tr>\n
734<\/td>\nWind-Driven Rain
Construction Moisture
Ground- and Surface Water <\/td>\n<\/tr>\n
735<\/td>\nAir Pressure Differentials
2. Heat Transfer
2.1 Steady-State Thermal Response <\/td>\n<\/tr>\n
736<\/td>\nSurface-to-Surface Thermal Resistance of a Flat Assembly
Combined Convective and Radiative Surface Heat Transfer
Heat Flow Across an Air Space <\/td>\n<\/tr>\n
737<\/td>\nTotal Thermal Resistance of a Flat Building Assembly
Thermal Transmittance of a Flat Building Assembly
Interface Temperatures in a Flat Building Component
Series and Parallel Heat Flow Paths <\/td>\n<\/tr>\n
738<\/td>\nThermal Bridging and Thermal Performance of Multidimensional Construction
Linear and Point Thermal Transmittances
2.2 Transient Thermal Response <\/td>\n<\/tr>\n
739<\/td>\n3. Airflow
Heat Flux with Airflow <\/td>\n<\/tr>\n
740<\/td>\n4. Moisture Transfer
4.1 Moisture Storage in Building Materials <\/td>\n<\/tr>\n
741<\/td>\n4.2 Moisture Flow Mechanisms <\/td>\n<\/tr>\n
742<\/td>\nWater Vapor Flow by Diffusion
Water Vapor Flow by Air Movement
Water Flow by Capillary Suction <\/td>\n<\/tr>\n
743<\/td>\nLiquid Flow at Low Moisture Content
Transient Moisture Flow <\/td>\n<\/tr>\n
744<\/td>\n5. Combined Heat, Air , and Moisture Transfer
6. Simplified Hygrothermal Design Calculations and Analyses
6.1 Surface Humidity and Condensation
6.2 Interstitial Condensation and Drying
Dew-Point Method <\/td>\n<\/tr>\n
745<\/td>\n7. Transient Computational Analysis <\/td>\n<\/tr>\n
746<\/td>\n7.1 Criteria to Evaluate Hygrothermal Simulation Results
Thermal Comfort
Perceived Air Quality
Human Health
Durability of Finishes and Structure
Energy Efficiency <\/td>\n<\/tr>\n
747<\/td>\nReferences <\/td>\n<\/tr>\n
748<\/td>\nBibliography <\/td>\n<\/tr>\n
749<\/td>\nCHAPTER 26 – HEAT, AIR, AND MOISTURE CONTROL IN BUILDING ASSEMBLIES\u2014MATERIAL PROPERTIES
1. Insulation Materials and Insulating Systems
1.1 Apparent Thermal Conductivity
Influencing Conditions <\/td>\n<\/tr>\n
751<\/td>\n1.2 Materials and Systems
Glass Fiber and Mineral Wool
Cellulose Fiber <\/td>\n<\/tr>\n
752<\/td>\nPlastic Foams
Cellular Glass
Capillary-Active Insulation Materials (CAIMs)
Transparent Insulation
Vacuum Insulation Panels <\/td>\n<\/tr>\n
753<\/td>\nReflective Insulation Systems
2. Air Barriers <\/td>\n<\/tr>\n
754<\/td>\n3. Water Vapor Retarders <\/td>\n<\/tr>\n
755<\/td>\n4. Data Tables
4.1 Thermal Property Data
4.2 Surface Emissivity and Emittance Data
4.3 Thermal Resistance of Plane Air Spaces
4.4 Air Permeance Data <\/td>\n<\/tr>\n
760<\/td>\n4.5 Water Vapor Permeance Data <\/td>\n<\/tr>\n
761<\/td>\n4.6 Moisture Storage Data
4.7 Soils Data <\/td>\n<\/tr>\n
764<\/td>\n4.8 Surface Film Coefficients\/ Resistances <\/td>\n<\/tr>\n
767<\/td>\n4.9 Codes and Standards <\/td>\n<\/tr>\n
769<\/td>\nReferences <\/td>\n<\/tr>\n
771<\/td>\nBibliography <\/td>\n<\/tr>\n
773<\/td>\nCHAPTER 27 – HEAT, AIR , AND MOISTURE CONTROL IN BUILDING ASSEMBLIES\u2014EXAMPLES
1. Heat Transfer
1.1 One-Dimensional Assembly U-Factor Calculation
Wall Assembly U-Factor <\/td>\n<\/tr>\n
774<\/td>\nRoof Assembly U-Factor
Attics
Basement Walls and Floors <\/td>\n<\/tr>\n
775<\/td>\n1.2 Two-Dimensional Assembly U-Factor Calculation
Wood-Frame Walls <\/td>\n<\/tr>\n
776<\/td>\nMasonry Walls
Constructions Containing Metal <\/td>\n<\/tr>\n
777<\/td>\nZone Method of Calculation
Modified Zone Method for Metal Stud Walls with Insulated Cavities <\/td>\n<\/tr>\n
778<\/td>\nComplex Assemblies <\/td>\n<\/tr>\n
779<\/td>\nWindows and Doors
2. Moisture Transport
2.1 Wall with Insulated Sheathing <\/td>\n<\/tr>\n
780<\/td>\n2.2 Vapor Pressure Profile (Glaser or Dew-Point) Analysis
Winter Wall Wetting Examples <\/td>\n<\/tr>\n
782<\/td>\n3. Transient Hygrothermal Modeling <\/td>\n<\/tr>\n
784<\/td>\n4. Air Movement
Equivalent Permeance
References
Bibliography <\/td>\n<\/tr>\n
785<\/td>\nCHAPTER 28 – COMBUSTION AND FUELS
1. Principles of Combustion
Combustion Reactions
Flammability Limits <\/td>\n<\/tr>\n
786<\/td>\nIgnition Temperature
Combustion Modes <\/td>\n<\/tr>\n
787<\/td>\nHeating Value
Altitude Compensation <\/td>\n<\/tr>\n
789<\/td>\n2. Fuel Classification
3. Gaseous Fuels
Types and Properties <\/td>\n<\/tr>\n
791<\/td>\n4. Liquid Fuels
Types of Fuel Oils <\/td>\n<\/tr>\n
792<\/td>\nCharacteristics of Fuel Oils <\/td>\n<\/tr>\n
793<\/td>\nTypes and Properties of Liquid Fuels for Engines
5. Solid Fuels <\/td>\n<\/tr>\n
794<\/td>\nTypes of Coals
Characteristics of Coal <\/td>\n<\/tr>\n
795<\/td>\n6. Combustion Calculations
Air Required for Combustion <\/td>\n<\/tr>\n
797<\/td>\nTheoretical CO2
Quantity of Flue Gas Produced
Water Vapor and Dew Point of Flue Gas <\/td>\n<\/tr>\n
798<\/td>\nSample Combustion Calculations <\/td>\n<\/tr>\n
799<\/td>\n7. Efficiency Calculations <\/td>\n<\/tr>\n
801<\/td>\nSeasonal Efficiency
8. Combustion Considerations
Air Pollution <\/td>\n<\/tr>\n
802<\/td>\nPortable Combustion Analyzers (PCAs)
Condensation and Corrosion <\/td>\n<\/tr>\n
803<\/td>\nAbnormal Combustion Noise in Gas Appliances <\/td>\n<\/tr>\n
804<\/td>\nSoot
References <\/td>\n<\/tr>\n
805<\/td>\nBibliography <\/td>\n<\/tr>\n
807<\/td>\nCHAPTER 29 – REFRIGERANTS
1. Refrigerant Properties
Global Environmental Properties <\/td>\n<\/tr>\n
812<\/td>\nPhysical Properties
Electrical Properties
Sound Velocity
2. Refrigerant Performance
3. Safety <\/td>\n<\/tr>\n
815<\/td>\n4. Leak Detection
Electronic Detection
Bubble Method <\/td>\n<\/tr>\n
816<\/td>\nPressure Change Methods
UV Dye Method
Ammonia Leaks
5. Compatibility with Construction Materials
Metals
Elastomers <\/td>\n<\/tr>\n
817<\/td>\nPlastics
Additional Compatibility Reports
References <\/td>\n<\/tr>\n
818<\/td>\nBibliography <\/td>\n<\/tr>\n
819<\/td>\nCHAPTER 30 – THERMOPHYSICAL PROPERTIES OF REFRIGERANTS <\/td>\n<\/tr>\n
820<\/td>\nFig. 1 Pressure-Enthalpy Diagram for Refrigerant 12 <\/td>\n<\/tr>\n
822<\/td>\nFig. 2 Pressure-Enthalpy Diagram for Refrigerant 22 <\/td>\n<\/tr>\n
824<\/td>\nFig. 3 Pressure-Enthalpy Diagram for Refrigerant 23 <\/td>\n<\/tr>\n
826<\/td>\nFig. 4 Pressure-Enthalpy Diagram for Refrigerant 32 <\/td>\n<\/tr>\n
828<\/td>\nFig. 5 Pressure-Enthalpy Diagram for Refrigerant 123 <\/td>\n<\/tr>\n
830<\/td>\nFig. 6 Pressure-Enthalpy Diagram for Refrigerant 124 <\/td>\n<\/tr>\n
832<\/td>\nFig. 7 Pressure-Enthalpy Diagram for Refrigerant 125 <\/td>\n<\/tr>\n
834<\/td>\nFig. 8 Pressure-Enthalpy Diagram for Refrigerant 134a <\/td>\n<\/tr>\n
838<\/td>\nFig. 9 Pressure-Enthalpy Diagram for Refrigerant 143a <\/td>\n<\/tr>\n
840<\/td>\nFig. 10 Pressure-Enthalpy Diagram for Refrigerant 152a <\/td>\n<\/tr>\n
842<\/td>\nFig. 11 Pressure-Enthalpy Diagram for Refrigerant 245fa <\/td>\n<\/tr>\n
844<\/td>\nFig. 12 Pressure-Enthalpy Diagram for Refrigerant R-1233zd(E) <\/td>\n<\/tr>\n
846<\/td>\nFig. 13 Pressure-Enthalpy Diagram for Refrigerant 1234yf <\/td>\n<\/tr>\n
848<\/td>\nFig. 14 Pressure-Enthalpy Diagram for Refrigerant 1234ze(E) <\/td>\n<\/tr>\n
850<\/td>\nFig. 15 Pressure-Enthalpy Diagram for Refrigerant 404A <\/td>\n<\/tr>\n
852<\/td>\nFig. 16 Pressure-Enthalpy Diagram for Refrigerant 407C <\/td>\n<\/tr>\n
854<\/td>\nFig. 17 Pressure-Enthalpy Diagram for Refrigerant 410A <\/td>\n<\/tr>\n
856<\/td>\nFig. 18 Pressure-Enthalpy Diagram for Refrigerant 507A <\/td>\n<\/tr>\n
858<\/td>\nFig. 19 Pressure-Enthalpy Diagram for Refrigerant 717 (Ammonia) <\/td>\n<\/tr>\n
860<\/td>\nFig. 20 Pressure-Enthalpy Diagram for Refrigerant 718 (Water\/Steam) <\/td>\n<\/tr>\n
862<\/td>\nFig. 21 Pressure-Enthalpy Diagram for Refrigerant 744 (Carbon Dioxide) <\/td>\n<\/tr>\n
864<\/td>\nFig. 22 Pressure-Enthalpy Diagram for Refrigerant 50 (Methane) <\/td>\n<\/tr>\n
866<\/td>\nFig. 23 Pressure-Enthalpy Diagram for Refrigerant 170 (Ethane) <\/td>\n<\/tr>\n
868<\/td>\nFig. 24 Pressure-Enthalpy Diagram for Refrigerant 290 (Propane) <\/td>\n<\/tr>\n
870<\/td>\nFig. 25 Pressure-Enthalpy Diagram for Refrigerant 600 (n-Butane) <\/td>\n<\/tr>\n
872<\/td>\nFig. 26 Pressure-Enthalpy Diagram for Refrigerant 600a (Isobutane) <\/td>\n<\/tr>\n
874<\/td>\nFig. 27 Pressure-Enthalpy Diagram for Refrigerant 1150 (Ethylene) <\/td>\n<\/tr>\n
876<\/td>\nFig. 28 Pressure-Enthalpy Diagram for Refrigerant 1270 (Propylene) <\/td>\n<\/tr>\n
878<\/td>\nFig. 29 Pressure-Enthalpy Diagram for Refrigerant 704 (Helium) <\/td>\n<\/tr>\n
880<\/td>\nFig. 30 Pressure-Enthalpy Diagram for Refrigerant 728 (Nitrogen) <\/td>\n<\/tr>\n
882<\/td>\nFig. 31 Pressure-Enthalpy Diagram for Refrigerant 729 (Air) <\/td>\n<\/tr>\n
884<\/td>\nFig. 32 Pressure-Enthalpy Diagram for Refrigerant 732 (Oxygen) <\/td>\n<\/tr>\n
886<\/td>\nFig. 33 Pressure-Enthalpy Diagram for Refrigerant 740 (Argon) <\/td>\n<\/tr>\n
888<\/td>\nFig. 34 Enthalpy-Concentration Diagram for Ammonia\/Water Solutions Prepared by Kwang Kim and Keith Herold, Center for Environmental Energy Engineering, University of Maryland at College Park <\/td>\n<\/tr>\n
890<\/td>\nFig. 35 Enthalpy-Concentration Diagram for Water\/Lithium Bromide Solutions <\/td>\n<\/tr>\n
891<\/td>\nFig. 36 Equilibrium Chart for Aqueous Lithium Bromide Solutions <\/td>\n<\/tr>\n
892<\/td>\nFig. 37 Specific Gravity of Aqueous Solutions of Lithium Bromide
References
Fig. 38 Specific Heat of Aqueous Lithium Bromide Solutions
Fig. 39 Viscosity of Aqueous Solutions of Lithium Bromide <\/td>\n<\/tr>\n
897<\/td>\nCHAPTER 31 – PHYSICAL PROPERTIES OF SECONDARY COOLANTS (BRINES)
1. Salt-Based Brines
Physical Properties <\/td>\n<\/tr>\n
900<\/td>\nCorrosion Inhibition
2. Inhibited Glycols
Physical Properties <\/td>\n<\/tr>\n
901<\/td>\nCorrosion Inhibition <\/td>\n<\/tr>\n
907<\/td>\nService Considerations <\/td>\n<\/tr>\n
908<\/td>\n3. Halocarbons
4. Nonhalocarbon, Nonaqueous Fluids
References <\/td>\n<\/tr>\n
909<\/td>\nBibliography <\/td>\n<\/tr>\n
911<\/td>\nCHAPTER 32 – SORBENTS AND DESICCANTS
1. Desiccant Applications
2. Desiccant Cycle <\/td>\n<\/tr>\n
913<\/td>\n3. Types of Desiccants
Liquid Absorbents <\/td>\n<\/tr>\n
914<\/td>\nSolid Adsorbents <\/td>\n<\/tr>\n
915<\/td>\n4. Desiccant Isotherms
5. Desiccant Life
6. Cosorption of Water Vapor and Indoor Air Contaminants <\/td>\n<\/tr>\n
916<\/td>\nReferences
Bibliography <\/td>\n<\/tr>\n
917<\/td>\nCHAPTER 33 – PHYSICAL PROPERTIES OF MATERIALS <\/td>\n<\/tr>\n
921<\/td>\nCHAPTER 34 – ENERGY RESOURCES
1. Characteristics of Energy and Energy Resource Forms
Fossil Fuels and Electricity
Forms of On-Site Energy
Nonrenewable and Renewable Energy Resources <\/td>\n<\/tr>\n
922<\/td>\nEnvironmental Considerations
1.1 On-Site Energy\/Energy Resource Relationships
Quantifiable Relationships
Intangible Relationships <\/td>\n<\/tr>\n
923<\/td>\n1.2 Summary
2. Energy Resource Planning
2.1 Integrated Resource Planning (IRP) <\/td>\n<\/tr>\n
924<\/td>\n2.2 Tradable Emission Credits
3. Overview of Global Energy Resources
3.1 World Energy Resources
Production <\/td>\n<\/tr>\n
925<\/td>\nReserves
Consumption <\/td>\n<\/tr>\n
927<\/td>\n3.2 Carbon Emissions
3.3 U.S. Energy Use
Per Capita Energy Consumption
Projected Overall Energy Consumption <\/td>\n<\/tr>\n
929<\/td>\nOutlook Summary
3.4 U.S. Agencies and Associations
References
Bibliography <\/td>\n<\/tr>\n
931<\/td>\nCHAPTER 35 – SUSTAINABILITY
1. Definition
2. Characteristics of Sustainability
Sustainability Addresses the Future
Sustainability Has Many Contributors
Sustainability Is Comprehensive <\/td>\n<\/tr>\n
932<\/td>\nTechnology Plays Only a Partial Role
3. Factors Impacting Sustainability
4. Primary HVAC&R Considerations in Sustainable Design
Energy Resource Availability <\/td>\n<\/tr>\n
933<\/td>\nFresh Water Supply
Effective and Efficient Use of Energy Resources and Water
Material Resource Availability and Management
Embodied Energy <\/td>\n<\/tr>\n
934<\/td>\nAir, Noise, and Water Pollution
Solid and Liquid Waste Disposal <\/td>\n<\/tr>\n
935<\/td>\n5. Factors Driving Sustainability into Design Practice
Climate Change
Regulatory Environment <\/td>\n<\/tr>\n
936<\/td>\nEvolving Standards of Care <\/td>\n<\/tr>\n
937<\/td>\nChanging Design Process <\/td>\n<\/tr>\n
938<\/td>\nOther Opportunities
6. Designing for Effective Energy Resource Use
Energy Ethic: Resource Conservation Design Principles
Energy and Power
Simplicity
Self-Imposed Budgets
Design Process for Energy-Efficient Projects <\/td>\n<\/tr>\n
939<\/td>\nBuilding Energy Use Elements <\/td>\n<\/tr>\n
941<\/td>\nReferences <\/td>\n<\/tr>\n
942<\/td>\nBibliography <\/td>\n<\/tr>\n
943<\/td>\nCHAPTER 36 – MOISTURE MANAGEMENT IN BUILDINGS
1. Effects of Humidity and Dampness
2. Elements of Moisture Management <\/td>\n<\/tr>\n
944<\/td>\n3. Envelope and HVAC Interactions
4. Indoor Wetting and Drying
Understanding Vapor Balance <\/td>\n<\/tr>\n
945<\/td>\nHygric Buffering
Student Residences and Schools <\/td>\n<\/tr>\n
946<\/td>\n5. Vapor Release Related to Building Use
Residential Buildings <\/td>\n<\/tr>\n
947<\/td>\nNatatoriums <\/td>\n<\/tr>\n
948<\/td>\n6. Indoor\/Outdoor Vapor Pressure Difference Analysis <\/td>\n<\/tr>\n
949<\/td>\nResidential Buildings <\/td>\n<\/tr>\n
951<\/td>\nNatatoriums <\/td>\n<\/tr>\n
952<\/td>\n7. Avoiding Moisture Problems <\/td>\n<\/tr>\n
953<\/td>\nHVAC Systems
Ground Pipes
Building Fabric
Building Envelope <\/td>\n<\/tr>\n
954<\/td>\n8. Climate-Specific Moisture Management
Temperate and Mixed Climates
Hot and Humid Climates
Cold Climates
9. Moisture Management in Other Handbook Chapters <\/td>\n<\/tr>\n
955<\/td>\nReferences <\/td>\n<\/tr>\n
956<\/td>\nBibliography <\/td>\n<\/tr>\n
957<\/td>\nCHAPTER 37 – MEASUREMENT AND INSTRUMENTS
1. Terminology <\/td>\n<\/tr>\n
959<\/td>\n2. Uncertainty Analysis
Uncertainty Sources
Uncertainty of a Measured Variable <\/td>\n<\/tr>\n
960<\/td>\n3. Temperature Measurement
Sampling and Averaging <\/td>\n<\/tr>\n
961<\/td>\nStatic Temperature Versus Total Temperature
3.1 Liquid-in-Glass Thermometers
Sources of Thermometer Errors
3.2 Resistance Thermometers <\/td>\n<\/tr>\n
962<\/td>\nResistance Temperature Devices
Thermistors
Semiconductor Devices <\/td>\n<\/tr>\n
963<\/td>\n3.3 Thermocouples <\/td>\n<\/tr>\n
964<\/td>\nWire Diameter and Composition <\/td>\n<\/tr>\n
965<\/td>\nMultiple Thermocouples
Surface Temperature Measurement
Thermocouple Construction
3.4 Optical Pyrometry
3.5 Infrared Radiation Thermometers
3.6 Infrared Thermography <\/td>\n<\/tr>\n
966<\/td>\n4. Humidity Measurement
4.1 Psychrometers <\/td>\n<\/tr>\n
967<\/td>\n4.2 Dew-Point Hygrometers
Condensation Dew-Point Hygrometers
Salt-Phase Heated Hygrometers
4.3 Mechanical Hygrometers
4.4 Electrical Impedance and Capacitance Hygrometers <\/td>\n<\/tr>\n
968<\/td>\nDunmore Hygrometers
Polymer Film Electronic Hygrometers
Ion Exchange Resin Electric Hygrometers
Impedance-Based Porous Ceramic Electronic Hygrometers
Aluminum Oxide Capacitive Sensor
4.5 Electrolytic Hygrometers
4.6 Piezoelectric Sorption
4.7 Spectroscopic (Radiation Absorption) Hygrometers
4.8 Gravimetric Hygrometers <\/td>\n<\/tr>\n
969<\/td>\n4.9 Calibration
5. Pressure Measurement
Units
5.1 Instruments
Pressure Standards <\/td>\n<\/tr>\n
970<\/td>\nMechanical Pressure Gages
Electromechanical Transducers
General Considerations <\/td>\n<\/tr>\n
971<\/td>\n6. Air Velocity Measurement
6.1 Airborne Tracer Techniques
6.2 Anemometers
Deflecting Vane Anemometers
Propeller or Revolving (Rotating) Vane Anemometers
Cup Anemometers
Thermal Anemometers <\/td>\n<\/tr>\n
973<\/td>\nLaser Doppler Velocimeters (or Anemometers)
Particle Image Velocimetry (PIV)
6.3 Pitot-Static Tubes <\/td>\n<\/tr>\n
974<\/td>\n6.4 Measuring Flow in Ducts <\/td>\n<\/tr>\n
976<\/td>\n6.5 Airflow-Measuring Hoods
7. Flow Rate Measurement <\/td>\n<\/tr>\n
977<\/td>\nFlow Measurement Methods
7.1 Venturi, Nozzle, and Orifice Flowmeters <\/td>\n<\/tr>\n
979<\/td>\n7.2 Variable-Area Flowmeters (Rotameters)
7.3 Coriolis Principle Flowmeters <\/td>\n<\/tr>\n
980<\/td>\n7.4 Positive-Displacement Meters
7.5 Turbine Flowmeters
7.6 Electromagnetic (MAG) Flowmeters
7.7 Vortex-Shedding Flowmeters
8. Air Infiltration, Airtightness, and Outdoor Air Ventilation Rate Measurement <\/td>\n<\/tr>\n
981<\/td>\nCarbon Dioxide
9. Carbon Dioxide Measurement
9.1 Nondispersive Infrared CO2 Detectors
Calibration
Applications
Optical (Shaft) Encoders <\/td>\n<\/tr>\n
982<\/td>\n9.2 Amperometric Electrochemical CO2 Detectors
9.3 Photoacoustic CO2 Detectors
Open-Cell Sensors
Closed-Cell Sensors
9.4 Potentiometric Electrochemical CO2 Detectors
9.5 Colorimetric Detector Tubes <\/td>\n<\/tr>\n
983<\/td>\n9.6 Laboratory Measurements
10. Electric Measurement
Ammeters
Voltmeters <\/td>\n<\/tr>\n
984<\/td>\nWattmeters
Power-Factor Meters
11. Rotative Speed and Position Measurement
Tachometers
Stroboscopes
AC Tachometer-Generators <\/td>\n<\/tr>\n
985<\/td>\n12. Sound and Vibration Measurement
12.1 Sound Measurement
Microphones
Sound Measurement Systems
Frequency Analysis
Sound Chambers <\/td>\n<\/tr>\n
986<\/td>\nCalibration
12.2 Vibration Measurement
Transducers
Vibration Measurement Systems <\/td>\n<\/tr>\n
987<\/td>\nCalibration
13. Lighting Measurement
14. Thermal Comfort Measurement
Clothing and Activity Level
Air Temperature
Air Velocity <\/td>\n<\/tr>\n
988<\/td>\nPlane Radiant Temperature
Mean Radiant Temperature
Air Humidity
14.1 Calculating Thermal Comfort
14.2 Integrating Instruments
15. Moisture Content and Transfer Measurement
Moisture Content <\/td>\n<\/tr>\n
990<\/td>\nVapor Permeability
Liquid Diffusivity
16. Heat Transfer Through Building Materials
Thermal Conductivity
Thermal Conductance and Resistance <\/td>\n<\/tr>\n
991<\/td>\n17. Air Contaminant Measurement
18. Combustion Analysis
18.1 Flue Gas Analysis
19. Data Acquisition and Recording <\/td>\n<\/tr>\n
992<\/td>\nDigital Recording <\/td>\n<\/tr>\n
993<\/td>\nData-Logging Devices
20. Mechanical Power Measurement
Measurement of Shaft Power
Measurement of Fluid Pumping Power
20.1 Symbols
Standards <\/td>\n<\/tr>\n
995<\/td>\nReferences <\/td>\n<\/tr>\n
996<\/td>\nBibliography <\/td>\n<\/tr>\n
997<\/td>\nCHAPTER 38 – ABBREVIATIONS AND SYMBOLS
Abbreviations for Text, Drawings, and Computer Programs
Computer Programs
Letter Symbols <\/td>\n<\/tr>\n
998<\/td>\nTable 1 Abbreviations for Text, Drawings, and Computer Programs <\/td>\n<\/tr>\n
1006<\/td>\nPiping System Identification
Definitions
Table 2 Examples of Legends
Table 3 Classification of Hazardous Materials and Designation of Colorsa
Method of Identification
Fig. 1 Visibility of Pipe Markings <\/td>\n<\/tr>\n
1007<\/td>\nTable 4 Size of Legend Letters
Codes and Standards <\/td>\n<\/tr>\n
1009<\/td>\nCHAPTER 39 – UNITS AND CONVERSIONS <\/td>\n<\/tr>\n
1011<\/td>\nCHAPTER 40 – CODES AND STANDARDS <\/td>\n<\/tr>\n
1040<\/td>\nAdditions and Corrections
2014 Refrigeration
2015 HVAC Applications <\/td>\n<\/tr>\n
1042<\/td>\nINDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

ASHRAE Handbook — Fundamentals (I-P)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASHRAE<\/b><\/a><\/td>\n2017<\/td>\n1081<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":194313,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2719],"product_tag":[],"class_list":{"0":"post-194309","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ashrae","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/194309","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/194313"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=194309"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=194309"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=194309"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}