{"id":229617,"date":"2024-10-19T14:56:16","date_gmt":"2024-10-19T14:56:16","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-62368-22019-tc\/"},"modified":"2024-10-25T09:06:17","modified_gmt":"2024-10-25T09:06:17","slug":"bsi-pd-iec-tr-62368-22019-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-62368-22019-tc\/","title":{"rendered":"BSI PD IEC TR 62368-2:2019 – TC"},"content":{"rendered":"

IEC TR 62368-2:2019 is available as \/2 which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition. <\/p>\n

IEC TR 62368-2:2019 provides explanatory information related to IEC 62368-1. Only those subclauses considered to need further background reference information or explanation of their content to benefit the reader are included. Therefore, not all numbered subclauses are cited. Unless otherwise noted, all references are to clauses, subclauses, annexes, figures or tables located in IEC 62368-1:2018. This third edition updates the second edition of IEC 62368-2 published in 2014 to take into account changes made to IEC 62368-1:2014 as identified in the Foreword of IEC 62368-1:2018. This Technical Report is informative only. In case of a conflict between IEC 62368-1 and IEC TR 62368-2, the requirements in IEC 62368-1 prevail over this Technical Report. Key words: Audio\/Video, Safeguards, Information, Communication<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nAudio\/video, information and communication technology equipment \u2013 Part 2: Explanatory information related to IEC 62368-1:2018 <\/td>\n<\/tr>\n
5<\/td>\nii
CONTENTS <\/td>\n<\/tr>\n
7<\/td>\niv <\/td>\n<\/tr>\n
9<\/td>\nvi
INTERNATIONAL ELECTROTECHNICALCOMMISSION
FOREWORD <\/td>\n<\/tr>\n
11<\/td>\nviii <\/td>\n<\/tr>\n
12<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
13<\/td>\nx
AUDIO\/VIDEO, INFORMATION AND
Clause 0 Principles of this product safety standard
0.5.1 General <\/td>\n<\/tr>\n
14<\/td>\nFigure 1 \u2013 Risk reduction as given in ISO\/IEC Guide 51 <\/td>\n<\/tr>\n
15<\/td>\nFigure 2 \u2013 HBSE Process Chart
Clause 1 Scope <\/td>\n<\/tr>\n
16<\/td>\nClause 2 Normative references
Clause 3 Terms, definitions and abbreviations
3.3.2.1 electrical enclosure <\/td>\n<\/tr>\n
17<\/td>\n3.3.5.1 basic insulation
3.3.5.2 double insulation
3.3.5.53.3.5.6 solid insulation
3.3.5.6 3.3.5.7 supplementary insulation
3.3.6.73.3.6.9 restricted access area
3.3.7.83.3.7.7 reasonably foreseeable misuse <\/td>\n<\/tr>\n
18<\/td>\n3.3.8.1 instructed person
3.3.8.3 skilled person
3.3.11.9 protective bonding conductor
Figure 3 \u2013 Protective bonding conductor as part of a safeguard
3.3.14.43.3.14.3 prospective touch voltage
3.3.14.93.3.14.8 working voltage
working voltage. <\/td>\n<\/tr>\n
19<\/td>\n3.3.15.2 class II construction
Clause 4 General requirements
Reasonable foreseeable misuse
functional insulation
functional components <\/td>\n<\/tr>\n
20<\/td>\n4.1.1 Application of requirements and acceptance of materials, components and subassemblies
Acceptance of components and component requirements from IEC 60065 and IEC 60950-1
4.1.5 Constructions and components not specifically covered <\/td>\n<\/tr>\n
21<\/td>\n4.1.6 Orientation during transport and use
4.1.8 Liquids and liquid filled components (LFC)
4.2 Energy source classifications
4.2.1 Class 1 energy source
4.2.2 Class 2 energy source
\u2013 a skilled person. <\/td>\n<\/tr>\n
22<\/td>\n4.2.3 Class 3 energy source
4.3.2 Safeguards for protection of an ordinary person
Figure 4 \u2013 Safeguards for protecting an ordinary person
Figure 5 \u2013 Safeguards for protecting an instructed person <\/td>\n<\/tr>\n
23<\/td>\n4.3.4 Safeguards for protection of a skilled person
Figure 6 Safeguards for protecting a skilled person
Table 1 \u2013 General summary of required safeguards
4.4.2 Composition of a safeguard <\/td>\n<\/tr>\n
24<\/td>\n4.4.44.4.3 Safeguard robustness
4.4.3.44.4.3.4 Impact test
4.4.3.6 Glass impact tests <\/td>\n<\/tr>\n
26<\/td>\n4.6 Fixing of conductors
4.7 Equipment for direct insertion into mains socket-outlets
4.9 Likelihood of fire or shock due to entry of conductive objects
Clause 5 Electrically-caused injury <\/td>\n<\/tr>\n
28<\/td>\n5.2.1 Electrical energy source classifications
Figure 18 \u2013 Conventional time\/current zones of effects <\/td>\n<\/tr>\n
29<\/td>\nTable 2 \u2013 Time\/current zones for a.c.AC 15 Hz to 100 Hz <\/td>\n<\/tr>\n
30<\/td>\nTable 3 \u2013 Time\/current zones for DC for hand to feet pathway (see IEC TS 60479-1:2005, Table 13) <\/td>\n<\/tr>\n
31<\/td>\nFigure 310 \u2013 Illustration that limits depend on both voltage and current
5.2.2.1 General
5.2.2.2 Steady-state voltage and current limits <\/td>\n<\/tr>\n
33<\/td>\n5.2.2.3 Capacitance limits
Table 4 \u2013 Limit values of accessible capacitance (threshold of pain) <\/td>\n<\/tr>\n
34<\/td>\nTable 7 Current limits for single pulses <\/td>\n<\/tr>\n
36<\/td>\n5.2.2.7 Audio signals
5.3.2 Accessibility to electrical energy sources and safeguards <\/td>\n<\/tr>\n
37<\/td>\n5.3.2.2 Contact requirements <\/td>\n<\/tr>\n
38<\/td>\n5.3.2.3 Compliance criteria
5.3.2.4 Terminals for connecting stripped wire
5.4 Insulation materials and requirements
5.4.1.1 Insulation
5.4.1.4 Maximum operating temperatures for materials, components and systems <\/td>\n<\/tr>\n
39<\/td>\n5.4.1.5 Pollution degrees
5.4.1.5.2 Test for pollution degree 1 environment and for an insulating compound
5.4.1.6 Insulation in transformers with varying dimensions
5.4.1.7 Insulation in circuits generating starting pulses
5.4.1.8 Determination of working voltage <\/td>\n<\/tr>\n
40<\/td>\n5.4.1.8.1 General
5.4.1.8.2 RMS working voltage
5.4.1.8.3 Peak working voltage
5.4.1.8.2 RMS working voltage
5.4.1.10 Thermoplastic parts on which conductive metallic parts are directly mounted
5.4.2 Clearances <\/td>\n<\/tr>\n
42<\/td>\n5.4.2.2 Procedure 1 for determining clearance using
Peak of the working voltage versus recurring peak voltage.
Figure 11 \u2013 Illustration of working voltage <\/td>\n<\/tr>\n
43<\/td>\n5.4.2.3.2.2 Determining a.c.AC mains transient voltages
5.4.2.3.2.3 Determining DC mains transient voltages
5.4.2.3.2.4 Determining external circuit transient voltages <\/td>\n<\/tr>\n
44<\/td>\nFigure 412 \u2013 Illustration of transient voltages on paired conductor external circuits <\/td>\n<\/tr>\n
45<\/td>\n5.4.2.3.2.3 Determining d.c. mains transient voltages
5.4.2.3.2.5 Determining transient voltage levels by measurement
5.4.2.3.4 Determining clearances using required withstand voltage
Table 15 \u2013 14 Minimum clearances using required withstand voltage <\/td>\n<\/tr>\n
46<\/td>\nFigure 614 \u2013 Basic and reinforced insulation in Table 1514 of IEC 62368-1:2014 \u2013 Ratio2018; ratio reinforced to basic <\/td>\n<\/tr>\n
47<\/td>\nFigure 715 \u2013 Reinforced clearances according to Rule 1, Rule 2, and Table 1514 <\/td>\n<\/tr>\n
48<\/td>\n5.4.2.4 Determining the adequacy of a clearance using an electric strength test <\/td>\n<\/tr>\n
49<\/td>\nTable 7 \u2013 Voltage drop across clearance and solid insulation in series
5.4.2.6 Compliance criteria <\/td>\n<\/tr>\n
50<\/td>\n5.4.3 Creepage distances
5.4.3.2 Test method
5.4.3.3 Material group and CTI <\/td>\n<\/tr>\n
51<\/td>\n5.4.3.4 Compliance criteria
5.4.4 Solid insulation
5.4.4.2 Minimum distance through insulation
5.4.4.3 Insulating compound forming solid insulation <\/td>\n<\/tr>\n
52<\/td>\n5.4.4.4 Solid insulation in semiconductor devices
5.4.4.5 Insulating compound forming cemented joints
5.4.4.6.1 General requirements
reinforced insulation.
5.4.4.6.2 Separable thin sheet material
reinforced insulation.
5.4.4.6.3 Non-separable thin sheet material <\/td>\n<\/tr>\n
53<\/td>\n5.4.4.6.4 Standard test procedure for non-separable thin sheet material
5.4.4.6.5 Mandrel test
5.4.4.7 Solid insulation in wound components
5.4.4.9 Solid insulation requirements at frequencies higher than 30 kHz
5.3.2.2.1 Frequency of the voltage <\/td>\n<\/tr>\n
54<\/td>\n5.4.5 Antenna terminal insulation
5.4.6 Insulation of internal wire as a part of a supplementary safeguard
Figure 816 \u2013 Example illustrating accessible internal wiring
5.4.7 Tests for semiconductor components and for cemented joints <\/td>\n<\/tr>\n
55<\/td>\n5.4.8 Humidity conditioning
5.4.9 Electric strength test
Table 26 \u2013 25 Test voltages for electric strength tests based on transient voltages
Table 27 \u2013 26 Test voltages for electric strength tests based on the peak of the working voltages and recurring peak voltages
Table 28 \u2013 27 Test voltages for electric strength tests based on temporary overvoltages
5.4.10 Safeguards against transient voltages from external circuits <\/td>\n<\/tr>\n
56<\/td>\n5.4.10.2.2 Impulse test <\/td>\n<\/tr>\n
57<\/td>\nFigure 917 \u2013 Waveform on insulation without surge suppressors and no breakdown
Figure 10 18 \u2013 Waveforms on insulation during breakdown without surge suppressors
Figure 11 19 \u2013 Waveforms on insulation with surge suppressors in operation <\/td>\n<\/tr>\n
58<\/td>\n5.4.11 Separation between external circuits and earth
5.5 Components as safeguards <\/td>\n<\/tr>\n
59<\/td>\nFigure 1321 \u2013 Example for an ES2 source
Figure 1422 \u2013 Example for an ES3 source <\/td>\n<\/tr>\n
60<\/td>\nfor double insulation or reinforced insulation.
5.5.2.1 General requirements
5.5.2.2 Safeguards against capacitorCapacitor discharge after disconnection of a connector <\/td>\n<\/tr>\n
61<\/td>\n5.5.6 Resistors
5.5.7 SPDs
5.5.8 Insulation between the mains and an external circuit consisting of a coaxial cable
5.6 Protective conductor
Figure 1523 \u2013 Overview of protective conductors <\/td>\n<\/tr>\n
62<\/td>\n5.6.1 General
5.6.2.2 Colour of insulation
5.6.3 Requirements for protective earthing conductors
5.6.4 Requirements for protective bonding conductors <\/td>\n<\/tr>\n
63<\/td>\n5.6.5 Terminals for protective conductors
5.6.6.2 Test method
5.6.7 Reliable connection of a protective earthing conductor
For stationary pluggable equipment type A where a skilled person verifies the proper connection of the earth conductor.
5.7 Prospective touch voltage, touch current and protective conductor current
5.7 3 Equipment set-up, supply connections and earth connections <\/td>\n<\/tr>\n
64<\/td>\n5.7.45.7. 5 Earthed accessible conductive parts
Figure 1624 \u2013 Example of a typical touch current measuring network
5.7.7 Prospective touch voltage and touch current due toassociated with external circuits <\/td>\n<\/tr>\n
65<\/td>\n5.7.6.25.7.7.2 Prospective touch voltage and touch current to external circuitsassociated with paired conductor cables
5.7.75.7.8 Summation of touch currents from external circuits
a) Touch current from external circuits <\/td>\n<\/tr>\n
66<\/td>\na.1) Floating circuits
Figure 25 17 \u2013 Touch current from a floating circuit
a.2) Earthed circuits
Figure 1826 \u2013 Touch current from an earthed circuit
b) Interconnection of several equipments <\/td>\n<\/tr>\n
67<\/td>\nFigure 1927 \u2013 Summation of touch currents in a PABX
b.1) Isolation
b.2) Common return, isolated from earth
b.3) Common return, connected to protective earth <\/td>\n<\/tr>\n
68<\/td>\nFault testing
Relays
Electronic protection
Mechanical protection <\/td>\n<\/tr>\n
69<\/td>\nControl circuitry
Clause6 Electrically-caused fire
6.2 Classification of power sources (PS) and potential ignition sources (PIS)
6.2.2 Power source circuit classifications <\/td>\n<\/tr>\n
70<\/td>\n6.2.2.2 Power measurement for worst-case fault
6.2.2.3 Power measurement for worst-case power source fault
6.2.2.4 PS1 <\/td>\n<\/tr>\n
71<\/td>\n6.2.2.5 PS2
6.2.2.6 PS3
6.2.3 Classification of potential ignition sources <\/td>\n<\/tr>\n
72<\/td>\n6.2.3.1 Arcing PIS
6.2.3.2 Resistive PIS <\/td>\n<\/tr>\n
73<\/td>\n6.3 Safeguards against fire under normal operating conditions and abnormal operating conditions
Figure 2028 \u2013 Possible safeguards against electrically-caused fire <\/td>\n<\/tr>\n
74<\/td>\nMethods of protection
B) Protection under single fault conditions <\/td>\n<\/tr>\n
75<\/td>\nTable 8 \u2013 Examples of application of various safeguards <\/td>\n<\/tr>\n
76<\/td>\nFigure 2129 \u2013 Fire clause flow chart <\/td>\n<\/tr>\n
77<\/td>\nTable 9 \u2013 Basic safeguards against fire under normal operating conditions and abnormal operating conditions
6.3.2 Compliance criteria
6.4 Safeguards against fire under single fault conditions <\/td>\n<\/tr>\n
78<\/td>\nTable 10 \u2013 Supplementary safeguards against fire under single fault conditions <\/td>\n<\/tr>\n
79<\/td>\nTable 11 \u2013 Method 1: Reduce the likelihood of ignition <\/td>\n<\/tr>\n
80<\/td>\nFigure 2230 \u2013 Prevent ignition flow chart <\/td>\n<\/tr>\n
81<\/td>\nFigure 23 31 \u2013 Control fire spread summary <\/td>\n<\/tr>\n
82<\/td>\nFigure 2432 \u2013 Control fire spread PS2 <\/td>\n<\/tr>\n
83<\/td>\nFigure 3325(Control fire spread S3 <\/td>\n<\/tr>\n
84<\/td>\n6.4.2 Reduction of the likelihood of ignition under single fault conditions in PS1 circuits
6.4.3 Reduction of the likelihood of ignition under single fault conditions in PS2 circuits and PS3 circuits
6.4.3.26.4.3.1 Requirements <\/td>\n<\/tr>\n
85<\/td>\n6.4.3.36.4.3.2 Test method
6.4.4 Control of fire spread in PS1 circuits <\/td>\n<\/tr>\n
86<\/td>\nTable 12 \u2013 Method 2: Control fire spread <\/td>\n<\/tr>\n
87<\/td>\n6.4.5 Control of fire spread in PS2 circuits <\/td>\n<\/tr>\n
88<\/td>\n6.4.5.2 Requirements <\/td>\n<\/tr>\n
89<\/td>\n6.4.5.3 Compliance criteria
6.4.6 Control of fire spread in a PS3 circuit
6.4.7 Separation of combustible materials from a PIS
6.4.7.2 Separation by distance <\/td>\n<\/tr>\n
91<\/td>\nFigure 2634 \u2013 Fire cone application to a large component
Figure 37 Minimum separation requirements from an arcinga PIS
Figure 38 Extended separation requirements from a PIS
Figure 39 \u2013 Rotated separation requirements due to forced air flow
6.4.7.3 Separation by a fire barrier <\/td>\n<\/tr>\n
92<\/td>\nFigure 40 \u2013 39 Deflected separation requirements from a PIS when a fire barrier is used
6.4.8 Fire enclosures and fire barriers
Table 13 \u2013 Fire barrier and fire enclosure flammability requirements <\/td>\n<\/tr>\n
93<\/td>\n6.4.8.2.2 Requirements for a fire enclosure
6.4.8.2.3 Compliance criteria
6.4.8.3 Constructional requirements for a fire enclosure and a fire barrier
6.4.8.3.1 Fire enclosure and fire barrier openings
Figure 40 Determination of top, bottom and side openings
6.4.8.3.2 Fire barrier dimensions <\/td>\n<\/tr>\n
94<\/td>\n6.4.8.3.3 Top openings and top opening properties
6.4.8.3.4 Bottom openings and bottom opening properties <\/td>\n<\/tr>\n
95<\/td>\nTable 14 \u2013 Summary \u2013 Fire enclosure and fire barrier material requirements <\/td>\n<\/tr>\n
96<\/td>\n6.4.8.3.6 Integrity of the a fire enclosure
6.4.8.3.66.4.8.3.7 Compliance criteria
6.4.8.4 Separation of a PIS from a fire enclosure and a fire barrier <\/td>\n<\/tr>\n
97<\/td>\n6.5.2 Compliance criteria1General requirements
6.5.36.5.2 Requirements for interconnection to building wiring <\/td>\n<\/tr>\n
98<\/td>\n6.6 Safeguards against fire due to the connection of additional equipment
Clause7 Injury caused by hazardous substances
Energy source: <\/td>\n<\/tr>\n
99<\/td>\nTransfer mechanism:
Injury:
Table 15 \u2013 Control of chemical hazards <\/td>\n<\/tr>\n
100<\/td>\nFigure 2735 \u2013 Flowchart demonstrating the hierarchy of hazard management <\/td>\n<\/tr>\n
101<\/td>\nFigure 2836 \u2013 Model for chemical injury
Clause 8 Mechanically-caused injury
8.1 General
8.2 Mechanical energy source classifications
8.2.1 General classification <\/td>\n<\/tr>\n
102<\/td>\nLine 4 \u2013 Loosening, exploding or imploding parts
Line 5 \u2013 Equipment mass
Line 6 \u2013 Wall\/ceiling or other structure mount
Notes b and c
8.2.2 MS1
8.2.3 MS2
8.2.4 MS3
8.3 Safeguards against mechanical energy sources <\/td>\n<\/tr>\n
103<\/td>\n8.4 Safeguards against parts with sharp edges and corners
8.5 Safeguards against moving parts
8.5.1 Requirements <\/td>\n<\/tr>\n
104<\/td>\n8.6 Stability of equipment
8.6.2.2 Static stability test <\/td>\n<\/tr>\n
105<\/td>\n8.6.2.3 Downwards force test
8.6.3 Relocation stability test
8.6.4 Glass slide test
8.6.5 Horizontal force test and compliance criteria
8.7 Equipment mounted to a wall or , ceiling or other structure <\/td>\n<\/tr>\n
106<\/td>\n8.7.2 Test methods
Figure 2937 \u2013 Direction of forces to be applied
Table 37 Torque to be applied to screws
8.8 Handle strength
8.8.2 Test method and compliance criteria
8.9 Wheels or casters attachment requirements <\/td>\n<\/tr>\n
107<\/td>\n8.10 Carts, stands, and similar carriers
8.10.1 General
8.10.2 Marking and instructions
8.10.3 Cart, stand or carrier loading test and compliance criteria
8.10.4 Cart, stand or carrier impact test
8.10.5 Mechanical stability
8.10.6 Thermoplastic temperature stability
8.11 Mounting means for rackslide-rail mounted equipment (SRME) <\/td>\n<\/tr>\n
108<\/td>\n8.11.3 Mechanical strength test
8.11.4 Mechanical strength test, 250 N, including
8.11.3.2 Lateral push foce test
Clause 9 Thermal burn injury
9.1 General <\/td>\n<\/tr>\n
109<\/td>\nB Model for a burn injury
Figure 3038 \u2013 Model for a burn injury <\/td>\n<\/tr>\n
110<\/td>\nC Types of burn injuries
D Model for safeguards against thermal burn injury
Figure 31 39 \u2013 Model for safeguards against thermal burn injury <\/td>\n<\/tr>\n
111<\/td>\nSafeguards overview
Figure 32 40 \u2013 Model for absence of a thermal hazard
Figure 3341 \u2013 Model for presence of a thermal hazard with a physical safeguard in place <\/td>\n<\/tr>\n
112<\/td>\nFigure 3442 \u2013 Model for presence of a thermal hazard with behavioural safeguard in place
9.2.29.2. TS11TS1
9.2.39.2.2 TS2
9.2.49.2.3 TS3
9.2.4 TS3 <\/td>\n<\/tr>\n
113<\/td>\n9.2.69.3 Touch temperature levelslimits
Contact time duration > 8 h <\/td>\n<\/tr>\n
114<\/td>\nOther considerations
Factors for consideration in determining test conditions <\/td>\n<\/tr>\n
115<\/td>\n9.3.1 Touch temperature limit requirements
9.3.2 Test method and compliance criteria <\/td>\n<\/tr>\n
116<\/td>\n9.39.4 Safeguards against thermal energy sources
9.4.19.5.1 Equipment safeguard
9.4.29.5.2 Instructional safeguard
Clause 10 Radiation <\/td>\n<\/tr>\n
117<\/td>\nTable 16 \u2013 Protection against radiation
9.6 Requirements for wireless power transmitters
9.6.3 Test method and compliance criteria
10 Radiation
10.2 Radiation energy source classifications
Table 39 \u2013 10.2.1 General classification
Rationale: Radiation energy source classifications Line 2 \u2013 for X-rays and acoustics are given in Table 39. For optical radiation (\u201cLasers\u201d and \u201cLamps and LED\u2019s <\/td>\n<\/tr>\n
118<\/td>\nFigure 43 \u2013 Flowchart for evaluation of Image projectors (beamers)
10.2.4 RS3
10.3 Safeguards against laser radiation <\/td>\n<\/tr>\n
119<\/td>\n10.4 Safeguards against visible, infra-red, and ultra-violetoptical radiation from lamps and lamp systems (including LED types)
10.4.1 General Requirements
10.5 Safeguards against X-radiation
10.6 Safeguards against acoustic energy sources <\/td>\n<\/tr>\n
120<\/td>\nFigure 44 \u2013 Graphical representation of LAeq,T
10.6.3 Requirements for dose-based systems <\/td>\n<\/tr>\n
121<\/td>\nTable 16 \u2013 Overview of requirements for dose-based systems <\/td>\n<\/tr>\n
122<\/td>\n10.6.5.110.6.6.1 Corded listening devices with analogue input
Annex A Examples of equipment within the scope of this standard <\/td>\n<\/tr>\n
123<\/td>\nAnnex B Normal operating condition tests, abnormal operating condition tests and single fault condition tests
General Equipment safeguards during various operating conditions <\/td>\n<\/tr>\n
125<\/td>\nB.1.6B.1.5 Temperature measurement conditions
B.2.3 Supply Voltage
B.2 \u2013 B.3 \u2013 B.4 Operating modes <\/td>\n<\/tr>\n
126<\/td>\nFigure 3645 \u2013 Overview of operating modes
B.4.4 Functional insulation
B.4.8 Compliance criteria during and after single fault conditions
Annex C UV Radiation
C.1.1 General
Annex D Test generators <\/td>\n<\/tr>\n
127<\/td>\nAnnex E Test conditions for equipment containing audio amplifiers
Annex F Equipment markings, instructions, and instructional safeguards
F.3 Equipment markings
F.3.3.2 Equipment without direct connection to mains <\/td>\n<\/tr>\n
128<\/td>\nF.3.6.2 Class II Equipment class marking
F.4 Instructions
F.5 Instructional safeguards
Annex G Components
G.1 Switches
G.2.1 Requirements
G.3.3 PTC thermistors <\/td>\n<\/tr>\n
129<\/td>\nG.3.4 Overcurrent protective devices <\/td>\n<\/tr>\n
130<\/td>\nG.3.5 Safeguard components not mentioned in G.3.1 to G.3.4
G.5.1 Wire insulation in wound components
G.5.2 Endurance test
G.5.2.2 Heat run test
G.5.3 Transformers
G.5.3.3 Transformer overload tests
Table G.3 Temperature limits for transformer windings and for motor windings (except for the motor running overload test) <\/td>\n<\/tr>\n
131<\/td>\nG.5.3.4 Transformers using fully insulated winding wire (FIW)
G.5.4 Motors
G.7 Mains supply cords <\/td>\n<\/tr>\n
132<\/td>\nG.7.3 \u2013 G.7.5 Mains supply cord anchorage, cord entry, bend protection
G.8 Varistors
G.9 Integrated circuit (IC) current limiters <\/td>\n<\/tr>\n
133<\/td>\nFigure 47 \u2013 Example of IC current limiter circuit
G.11 Capacitors and RC units <\/td>\n<\/tr>\n
134<\/td>\nG.13 Printed boards
G.13.6 Tests on coated printed boards
G.14 Coatings on component terminals
G.15 Pressurized liquid filled components <\/td>\n<\/tr>\n
135<\/td>\nAnnex H Criteria for telephone ringing signals
H.2 Method A <\/td>\n<\/tr>\n
136<\/td>\nFigure 3848 \u2013 Current limit curves
H.3 Method B <\/td>\n<\/tr>\n
137<\/td>\nAnnex J Insulated winding wires for use without interleaved insulation
Annex K Safety interlocks
Annex L Disconnect devices <\/td>\n<\/tr>\n
138<\/td>\nAnnex M Equipment containing batteries and their protection circuits
M.1 General requirements
M.2 Safety of batteries and their cells
ordinary person or an instructed person. <\/td>\n<\/tr>\n
139<\/td>\nTable 17 \u2013 Safety of batteries and their cells \u2013 requirements (expanded information on documents and scope) <\/td>\n<\/tr>\n
144<\/td>\nM.3 Protection circuits for batteries provided within the equipment
M.4 Additional safeguards for equipment containing a portable secondary lithium battery
M.4.2.2 Compliance criteria <\/td>\n<\/tr>\n
145<\/td>\nFigure 3949 \u2013 Example of a dummy battery circuit
M.4.4 Drop test of equipment containing a secondary lithium battery <\/td>\n<\/tr>\n
146<\/td>\nM.6.1.1 General requirementsRequirements
M.7.1 Ventilation preventing an explosive gas concentration
M.7.2 Test method and compliance criteria
M.8.2.1 General
Annex O Measurement of creepage distances and clearances
Annex P Safeguards against conductive objects
P.1 General
P.2 Safeguards against entry or consequences of entry of a foreign object <\/td>\n<\/tr>\n
147<\/td>\nP.2.3.1 SafeguardsSafeguard requirements
P.3 Safeguards against spillage of internal liquids
P.4 Metalized coatings and adhesives securing parts
Annex Q Circuits intended for interconnection with building wiring <\/td>\n<\/tr>\n
148<\/td>\nQ.1.2 Test method and compliance criteria
Q.2 Test for external circuits \u2013 paired conductor cable
Figure 4050 \u2013 Example of a circuit with two power sources
Annex R Limited short-circuit test
Annex S Tests for resistance to heat and fire
S.1 Flammability test for fire enclosure and fire barrier materials of equipment where the steady-state power does not exceed 4 000 W <\/td>\n<\/tr>\n
149<\/td>\nS.2 Flammability test for fire enclosure and fire barrier integrity
S.3 Flammability tests for the bottom of a fire enclosure
S.4 Flammability classification of materials <\/td>\n<\/tr>\n
150<\/td>\nS.5 Flammability test for fire enclosure materials of equipment with a steady state power exceeding 4 000 W
Annex T Mechanical strength tests
T.2 Steady force test, 10 N
T.3 Steady force test, 30 N
T.4 Steady force test, 100 N
T.5 Steady force test, 250 N
T.6 Enclosure impact test
T.7 Drop test <\/td>\n<\/tr>\n
151<\/td>\nT.8 Stress relief test
T.9 ImpactGlass impact test
T.10 Glass fragmentation test
Annex U Mechanical strength of CRTs and protection against the effects of implosion
U.2 Test method and compliance criteria for non-intrinsically protected CRTs
Annex V Determination of accessible parts
Figure V.3 Blunt probe <\/td>\n<\/tr>\n
152<\/td>\nAnnex X Alternative method for determing clearances for insulation in
Annex Y Construction requirements for outdoor enclosures <\/td>\n<\/tr>\n
153<\/td>\nElectric shock
Fire
Mechanical hazards
Heat-related hazards <\/td>\n<\/tr>\n
154<\/td>\nRadiation
Chemical hazards
Biological hazards
Explosion hazards
Y.3 Resistance to corrosion
Y.4.6 Securing means <\/td>\n<\/tr>\n
155<\/td>\nAnnex A
(informative)
A.1 Industry demand for incorporating SPDs in the equipment <\/td>\n<\/tr>\n
156<\/td>\nFigure A.1 \u2013 Installation has poor earthing and bonding; equipment damaged (from ITU-T K.66) <\/td>\n<\/tr>\n
157<\/td>\nFigure A.3 \u2013 Installation with poor earthing and bonding, using a varistor and a GDT for protection against a lightning strike <\/td>\n<\/tr>\n
158<\/td>\nA.3 Technical discussion
A.3.1 General
Figure A.5 \u2013 Safeguards <\/td>\n<\/tr>\n
159<\/td>\nA.3.3 Consideration of a GDT and its follow current
A.3.4 Consideration of varistors and its leak current
A.3.5 Surge voltage\/current from mains
A.3.5.2 Case of longitudinal transient on primary circuit <\/td>\n<\/tr>\n
160<\/td>\nA.3.6 Surge voltage\/current from external circuits
A.3.6.2 Case of longitudinal transient on external circuits
A.3.7 Summary
A.4 Information about follow current (or follow-on current)
A.4.1 General <\/td>\n<\/tr>\n
161<\/td>\nA.4.2 What is follow-on-current?
A.4.3 What are the V-I properties of discharge tubes? <\/td>\n<\/tr>\n
162<\/td>\nFigure A.6 \u2013 Discharge stages
Glow discharge
Arc discharge
A.4.4 What is holdover? <\/td>\n<\/tr>\n
163<\/td>\nFigure A.7 \u2013 holdoverHoldover <\/td>\n<\/tr>\n
164<\/td>\nFigure A.8 \u2013 Discharge
A.4.5 Follow-on-current from AC sources? <\/td>\n<\/tr>\n
165<\/td>\nFigure A.9 \u2013 Characteristics <\/td>\n<\/tr>\n
166<\/td>\nFigure A.10 \u2013 Follow on current pictures
A.4.6 Applications with a high risk of follow-on-current <\/td>\n<\/tr>\n
167<\/td>\nAnnex B
(informative)
B.1 General
B.2 EMC filters
Figure B.1 \u2013 Typical EMC filter schematic <\/td>\n<\/tr>\n
168<\/td>\nB.4 The requirement
B.5 100 M\u2126 probes
Table B.1 \u2013 100 M\u03a9oscilloscope probes <\/td>\n<\/tr>\n
169<\/td>\nFigure B.2 \u2013 100 M\u03a9 oscilloscope probes
B.6 The R-C time constant and its parameters
Table B.2 \u2013 Capacitor discharge <\/td>\n<\/tr>\n
171<\/td>\nFigure B.3 \u2013 Combinations of EUT resistance and capacitance for 1 s time constant
B.7 Time constant measurement. <\/td>\n<\/tr>\n
172<\/td>\nFigure B.4 \u2013 240 V mains followed by capacitor discharge <\/td>\n<\/tr>\n
173<\/td>\nFigure B.5 \u2013 Time constant measurement schematic <\/td>\n<\/tr>\n
174<\/td>\nB.8 Effect of probe resistance
B.9 Effect of probe capacitance <\/td>\n<\/tr>\n
175<\/td>\nB.10 Determining the time constant <\/td>\n<\/tr>\n
177<\/td>\nFigure B.6 \u2013 Worst-case measured time constant values for 100 M\u03a9 and 10 M\u03a9 probes <\/td>\n<\/tr>\n
178<\/td>\nAnnex C
(informative) <\/td>\n<\/tr>\n
179<\/td>\nBibliography <\/td>\n<\/tr>\n
182<\/td>\nundefined <\/td>\n<\/tr>\n
184<\/td>\nEnglish
CONTENTS <\/td>\n<\/tr>\n
188<\/td>\nFOREWORD <\/td>\n<\/tr>\n
191<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
192<\/td>\n0 Principles of this product safety standard <\/td>\n<\/tr>\n
193<\/td>\nFigures
Figure 1 \u2013 Risk reduction as given in ISO\/IEC Guide 51 <\/td>\n<\/tr>\n
194<\/td>\n1 Scope
Figure 2 \u2013 HBSE Process Chart <\/td>\n<\/tr>\n
195<\/td>\n2 Normative references
3 Terms, definitions and abbreviations <\/td>\n<\/tr>\n
197<\/td>\nFigure 3 \u2013 Protective bonding conductor as part of a safeguard <\/td>\n<\/tr>\n
198<\/td>\n4 General requirements <\/td>\n<\/tr>\n
201<\/td>\nFigure 4 \u2013 Safeguards for protecting an ordinary person
Figure 5 \u2013 Safeguards for protecting an instructed person <\/td>\n<\/tr>\n
202<\/td>\nFigure 6 \u2013 Safeguards for protecting a skilled person
Tables
Table 1 \u2013 General summary of required safeguards <\/td>\n<\/tr>\n
204<\/td>\nFigure 7 \u2013 Flow chart showing the intent of the glass requirements <\/td>\n<\/tr>\n
205<\/td>\n5 Electrically-caused injury <\/td>\n<\/tr>\n
207<\/td>\nFigure 8 \u2013 Conventional time\/current zones of effects of AC currents (15 Hz to 100 Hz) on persons for a current path correspondingto left hand to feet (see IEC TS 60479-1:2005, Figure 20) <\/td>\n<\/tr>\n
208<\/td>\nFigure 9 \u2013 Conventional time\/current zones of effects of DC currents on persons for a longitudinal upward current path (see IEC TS 60479-1:2005, Figure 22)
Table 2 \u2013 Time\/current zones for AC 15 Hz to 100 Hz for hand to feet pathway (see IEC TS 60479-1:2005, Table 11) <\/td>\n<\/tr>\n
209<\/td>\nFigure 10 \u2013 Illustration that limits depend on both voltage and current
Table 3 \u2013 Time\/current zones for DC for hand to feet pathway (see IEC TS 60479-1:2005, Table 13) <\/td>\n<\/tr>\n
212<\/td>\nTable 4 \u2013 Limit values of accessible capacitance (threshold of pain) <\/td>\n<\/tr>\n
214<\/td>\nTable 5 \u2013 Total body resistances RT for a current path hand to hand, DC, for large surface areas of contact in dry condition <\/td>\n<\/tr>\n
221<\/td>\nFigure 11 \u2013 Illustration of working voltage <\/td>\n<\/tr>\n
223<\/td>\nFigure 12 \u2013 Illustration of transient voltages on paired conductor external circuits <\/td>\n<\/tr>\n
224<\/td>\nFigure 13 \u2013 Illustration of transient voltages on coaxial-cable external circuits
Table 6 \u2013 Insulation requirements for external circuits <\/td>\n<\/tr>\n
225<\/td>\nFigure 14 \u2013 Basic and reinforced insulation in Table 14 of IEC 62368-1:2018; ratio reinforced to basic <\/td>\n<\/tr>\n
227<\/td>\nFigure 15 \u2013 Reinforced clearances according to Rule 1, Rule 2, and Table 14 <\/td>\n<\/tr>\n
229<\/td>\nTable 7 \u2013 Voltage drop across clearance and solid insulation in series <\/td>\n<\/tr>\n
235<\/td>\nFigure 16 \u2013 Example illustrating accessible internal wiring <\/td>\n<\/tr>\n
238<\/td>\nFigure 17 \u2013 Waveform on insulation without surge suppressors and no breakdown <\/td>\n<\/tr>\n
239<\/td>\nFigure 18 \u2013 Waveforms on insulation during breakdown without surge suppressors
Figure 19 \u2013 Waveforms on insulation with surge suppressors in operation
Figure 20 \u2013 Waveform on short-circuited surge suppressor and insulation <\/td>\n<\/tr>\n
241<\/td>\nFigure 21 \u2013 Example for an ES2 source
Figure 22 \u2013 Example for an ES3 source <\/td>\n<\/tr>\n
243<\/td>\nFigure 23 \u2013 Overview of protective conductors <\/td>\n<\/tr>\n
246<\/td>\nFigure 24 \u2013 Example of a typical touch current measuring network <\/td>\n<\/tr>\n
248<\/td>\nFigure 25 \u2013 Touch current from a floating circuit <\/td>\n<\/tr>\n
249<\/td>\nFigure 26 \u2013 Touch current from an earthed circuit
Figure 27 \u2013 Summation of touch currents in a PABX <\/td>\n<\/tr>\n
252<\/td>\n6 Electrically-caused fire <\/td>\n<\/tr>\n
257<\/td>\nFigure 28 \u2013 Possible safeguards against electrically-caused fire <\/td>\n<\/tr>\n
259<\/td>\nTable 8 \u2013 Examples of application of various safeguards <\/td>\n<\/tr>\n
260<\/td>\nFigure 29 \u2013 Fire clause flow chart <\/td>\n<\/tr>\n
261<\/td>\nTable 9 \u2013 Basic safeguards against fire under normal operating conditions and abnormal operating conditions <\/td>\n<\/tr>\n
262<\/td>\nTable 10 \u2013 Supplementary safeguards against fire under single fault conditions <\/td>\n<\/tr>\n
264<\/td>\nTable 11 \u2013 Method 1: Reduce the likelihood of ignition <\/td>\n<\/tr>\n
265<\/td>\nFigure 30 \u2013 Prevent ignition flow chart <\/td>\n<\/tr>\n
267<\/td>\nFigure 31 \u2013 Control fire spread summary <\/td>\n<\/tr>\n
268<\/td>\nFigure 32 \u2013 Control fire spread PS2 <\/td>\n<\/tr>\n
269<\/td>\nFigure 33 \u2013 Control fire spread PS3 <\/td>\n<\/tr>\n
273<\/td>\nTable 12 \u2013 Method 2: Control fire spread <\/td>\n<\/tr>\n
278<\/td>\nFigure 34 \u2013 Fire cone application to a large component <\/td>\n<\/tr>\n
280<\/td>\nTable 13 \u2013 Fire barrier and fire enclosure flammability requirements <\/td>\n<\/tr>\n
284<\/td>\nTable 14 \u2013 Summary \u2013 Fire enclosure and fire barrier material requirements <\/td>\n<\/tr>\n
287<\/td>\n7 Injury caused by hazardous substances <\/td>\n<\/tr>\n
289<\/td>\nTable 15 \u2013 Control of chemical hazards <\/td>\n<\/tr>\n
290<\/td>\nFigure 35 \u2013 Flowchart demonstrating the hierarchy of hazard management <\/td>\n<\/tr>\n
291<\/td>\n8 Mechanically-caused injury
Figure 36 \u2013 Model for chemical injury <\/td>\n<\/tr>\n
296<\/td>\nFigure 37 \u2013 Direction of forces to be applied <\/td>\n<\/tr>\n
299<\/td>\n9 Thermal burn injury
Figure 38 \u2013 Model for a burn injury <\/td>\n<\/tr>\n
301<\/td>\nFigure 39 \u2013 Model for safeguards against thermal burn injury <\/td>\n<\/tr>\n
302<\/td>\nFigure 40 \u2013 Model for absence of a thermal hazard
Figure 41 \u2013 Model for presence of a thermal hazard with a physical safeguard in place
Figure 42 \u2013 Model for presence of a thermal hazard with behavioural safeguard in place <\/td>\n<\/tr>\n
308<\/td>\n10 Radiation <\/td>\n<\/tr>\n
310<\/td>\nFigure 43 \u2013 Flowchart for evaluation of Image projectors (beamers) <\/td>\n<\/tr>\n
312<\/td>\nFigure 44 \u2013 Graphical representation of LAeq,T <\/td>\n<\/tr>\n
314<\/td>\nTable 16 \u2013 Overview of requirements for dose-based systems <\/td>\n<\/tr>\n
315<\/td>\nAnnexes
Annex A Examples of equipment within the scope of this standard
Annex B Normal operating condition tests, abnormal operating condition tests and single fault condition tests <\/td>\n<\/tr>\n
317<\/td>\nFigure 45 \u2013 Overview of operating modes <\/td>\n<\/tr>\n
318<\/td>\nAnnex C UV Radiation
Annex D Test generators <\/td>\n<\/tr>\n
319<\/td>\nAnnex E Test conditions for equipment containing audio amplifiers
Annex F Equipment markings, instructions, and instructional safeguards <\/td>\n<\/tr>\n
320<\/td>\nAnnex G Components <\/td>\n<\/tr>\n
322<\/td>\nFigure 46 \u2013 Voltage-current characteristics (Typical data) <\/td>\n<\/tr>\n
326<\/td>\nFigure 47 \u2013 Example of IC current limiter circuit <\/td>\n<\/tr>\n
328<\/td>\nAnnex H Criteria for telephone ringing signals <\/td>\n<\/tr>\n
329<\/td>\nFigure 48 \u2013 Current limit curves <\/td>\n<\/tr>\n
330<\/td>\nAnnex J Insulated winding wires for use without interleaved insulation
Annex K Safety interlocks
Annex L Disconnect devices <\/td>\n<\/tr>\n
331<\/td>\nAnnex M Equipment containing batteries and their protection circuits <\/td>\n<\/tr>\n
333<\/td>\nTable 17 \u2013 Safety of batteries and their cells \u2013 requirements (expanded information on documents and scope) <\/td>\n<\/tr>\n
339<\/td>\nFigure 49 \u2013 Example of a dummy battery circuit <\/td>\n<\/tr>\n
340<\/td>\nAnnex O Measurement of creepage distances and clearances
Annex P Safeguards against conductive objects <\/td>\n<\/tr>\n
341<\/td>\nAnnex Q Circuits intended for interconnection with building wiring <\/td>\n<\/tr>\n
342<\/td>\nAnnex R Limited short-circuit test
Annex S Tests for resistance to heat and fire
Figure 50 \u2013 Example of a circuit with two power sources <\/td>\n<\/tr>\n
344<\/td>\nAnnex T Mechanical strength tests <\/td>\n<\/tr>\n
345<\/td>\nAnnex U Mechanical strength of CRTs and protection against the effects of implosion
Annex V Determination of accessible parts <\/td>\n<\/tr>\n
346<\/td>\nAnnex X Alternative method for determing clearances for insulation in circuits connected to an AC mains not exceeding 420 V peak (300 V RMS)
Annex Y Construction requirements for outdoor enclosures <\/td>\n<\/tr>\n
349<\/td>\nAnnex A (informative) Background information related to the use of SPDs <\/td>\n<\/tr>\n
350<\/td>\nFigure A.1 \u2013 Installation has poor earthing and bonding; equipment damaged (from ITUT K.66)
Figure A.2 \u2013 Installation has poor earthing and bonding; using main earth bar for protection against lightning strike (from ITU-T K.66) <\/td>\n<\/tr>\n
351<\/td>\nFigure A.3 \u2013 Installation with poor earthing and bonding, using a varistor and a GDT for protection against a lightning strike
Figure A.4 \u2013 Installation with poor earthing and bonding; equipment damaged (TV set) <\/td>\n<\/tr>\n
352<\/td>\nFigure A.5 \u2013 Safeguards <\/td>\n<\/tr>\n
356<\/td>\nFigure A.6 \u2013 Discharge stages <\/td>\n<\/tr>\n
357<\/td>\nFigure A.7 \u2013 Holdover <\/td>\n<\/tr>\n
358<\/td>\nFigure A.8 \u2013 Discharge <\/td>\n<\/tr>\n
359<\/td>\nFigure A.9 \u2013 Characteristics <\/td>\n<\/tr>\n
360<\/td>\nFigure A.10 \u2013 Follow on current pictures <\/td>\n<\/tr>\n
362<\/td>\nAnnex B (informative) Background information related to measurement of discharges \u2013 Determining the R-C discharge time constant for X- and Y-capacitors
Figure B.1 \u2013 Typical EMC filter schematic <\/td>\n<\/tr>\n
364<\/td>\nFigure B.2 \u2013 100 M\u03a9 oscilloscope probes
Table B.1 \u2013 100 M\u03a9 oscilloscope probes <\/td>\n<\/tr>\n
365<\/td>\nTable B.2 \u2013 Capacitor discharge <\/td>\n<\/tr>\n
366<\/td>\nFigure B.3 \u2013 Combinations of EUT resistance and capacitance for 1 s time constant <\/td>\n<\/tr>\n
368<\/td>\nFigure B.4 \u2013 240 V mains followed by capacitor discharge <\/td>\n<\/tr>\n
369<\/td>\nFigure B.5 \u2013 Time constant measurement schematic <\/td>\n<\/tr>\n
372<\/td>\nTable B.3 \u2013 Maximum Tmeasured values for combinations of REUT and CEUT for TEUT of 1 s <\/td>\n<\/tr>\n
373<\/td>\nFigure B.6 \u2013 Worst-case measured time constant values for 100 M\u03a9 and 10 M\u03a9 probes <\/td>\n<\/tr>\n
374<\/td>\nAnnex C (informative) Background information related to resistance to candle flame ignition <\/td>\n<\/tr>\n
375<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Tracked Changes. Audio\/video, information and communication technology equipment – Explanatory information related to IEC 62368-1:2018<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2020<\/td>\n378<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":229623,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[637,2641],"product_tag":[],"class_list":{"0":"post-229617","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-33-160-01","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/229617","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/229623"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=229617"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=229617"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=229617"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}