{"id":254723,"date":"2024-10-19T16:49:58","date_gmt":"2024-10-19T16:49:58","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61869-22012\/"},"modified":"2024-10-25T12:15:50","modified_gmt":"2024-10-25T12:15:50","slug":"bs-en-61869-22012","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61869-22012\/","title":{"rendered":"BS EN 61869-2:2012"},"content":{"rendered":"
IEC 61869-2:2012 is applicable to newly manufactured inductive current transformers for use with electrical measuring instruments and\/or electrical protective devices having rated frequencies from 15 Hz to 100 Hz. This International Standard cancels and replaces the first edition of IEC 60044-1, published in 1996, and its Amendment 1 (2000) and Amendment 2 (2002), and the first edition of IEC 60044-6, published in 1992. Additionally it introduces technical innovations in the standardization and adaptation of the requirements for current transformers for transient performance. This publication is to be read in conjunction with \/2.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions 3.1 General definitions <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 3.3 Definitions related to current ratings <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3.4 Definitions related to accuracy <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Figures Figure 201 \u2013 Duty cycles <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 202 \u2013 Primary time constant TP <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure 203 \u2013 Secondary linked flux for different fault inception angles \u03b3 <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.7 Index of abbreviations <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5 Ratings 5.3 Rated insulation levels 5.3.2 Rated primary terminal insulation level 5.3.5 Insulation requirements for secondary terminals 5.3.201 Inter-turn insulation requirements 5.5 Rated output 5.5.201 Rated output values 5.5.202 Rated resistive burden values <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.6 Rated accuracy class 5.6.201 Measuring current transformers Tables Table 201 \u2013 Limits of ratio error and phase displacement for measuring current transformers (classes 0,1 to 1) <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.6.202 Protective current transformers Table 202 \u2013 Limits of ratio error and phase displacement formeasuring current transformers (classes 0,2S and 0,5S) Table 203 \u2013 Limits of ratio error for measuringcurrent transformers (classes 3 and 5) <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table 204 \u2013 Characterisation of protective classes Table 205 \u2013 Error limits for protective current transformers class P and PR <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 206 \u2013 Error limits for TPX, TPY and TPZ current transformers <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.6.203 Class assignments for selectable-ratio current transformers 5.201 Standard values for rated primary current Table 207 \u2013 Specification Methods for TPX, TPY and TPZ current transformers <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.202 Standard values for rated secondary current 5.203 Standard values for rated continuous thermal current 5.204 Short-time current ratings 5.204.1 Rated short-time thermal current (Ith) 5.204.2 Rated dynamic current (Idyn) 6 Design and construction 6.4 Requirements for temperature rise of parts and components 6.4.1 General 6.13 Markings 6.13.201 Terminal markings <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.13.202 Rating plate markings Table 208 \u2013 Marking of terminals <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7 Tests 7.1 General 7.1.2 Lists of tests <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.2 Type tests 7.2.2 Temperature-rise test Table 10 \u2013 List of tests <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7.2.3 Impulse voltage withstand test on primary terminals 7.2.6 Tests for accuracy <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 7.2.201 Short-time current tests <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 7.3 Routine tests 7.3.1 Power-frequency voltage withstand tests on primary terminals 7.3.5 Tests for accuracy <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 7.3.201 Determination of the secondary winding resistance (Rct) 7.3.202 Determination of the secondary loop time constant (Ts) <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 7.3.203 Test for rated knee point e.m.f. (Ek) and exciting current at Ek 7.3.204 Inter-turn overvoltage test <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 7.4 Special tests 7.4.3 Measurement of capacitance and dielectric dissipation factor 7.4.6 Internal arc fault test <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 7.5 Sample tests 7.5.1 Determination of the remanence factor 7.5.2 Determination of the instrument security factor (FS) of measuring current transformers <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Annex 2A (normative) Protective current transformers classes P, PR Figure 2A.1 \u2013 Vector Diagram <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 2A.2 \u2013 Error triangle <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure\u00a02A.3 \u2013 Typical current waveforms Figure 2A.4 \u2013 Basic circuit for 1:1 current transformer <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 2A.5 \u2013 Basic circuit for current transformer with any ratio Figure 2A.6 \u2013 Alternative test circuit <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Annex 2B (normative) Protective current transformer classesfor transient performance <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 2B.1 \u2013 Short-circuit current for two different fault inception angles Figure 2B.2 \u2013 \u03c8max(t) as the curve of the highest flux values, considering all relevant fault inception angles \u03b3 <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Figure 2B.3 \u2013 Relevant time ranges for calculation of transient factor <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Figure 2B.4 \u2013 Determination of Ktfin time range 1 at 50 Hz for Ts = 1,8 s Figure 2B.5 \u2013 Determination of Ktfin time range 1at 60 Hz for Ts = 1,5 s Figure 2B.6 \u2013 Determination of Ktfin time range 1at 16,7 Hz for Ts = 5,5 s <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Figure 2B.7 \u2013 Limiting the magnetic flux by considering core saturation <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 2B.8 \u2013 Basic circuit <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure 2B.9 \u2013 Determination of remanence factor by hysteresis loop <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 2B.10 \u2013 Circuit for d.c. method Figure 2B.11 \u2013 Time-amplitude and flux-current diagrams <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 2B.12 \u2013 Recordings with shifted flux base line <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 2B.13 \u2013 Circuit for capacitor discharge method <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 2B.14 \u2013 Typical records for capacitor discharge method <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 2B.15 \u2013 Measurement of error currents <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Annex 2C (normative) Proof of low-leakage reactance type <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Annex 2D (informative) Technique used in temperature rise test of oil-immersed transformers to determine the thermal constant by an experimental estimation <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 2D.1 \u2013 Graphical extrapolation to ultimate temperature rise <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Annex\u00a02E (informative) Alternative measurement of the ratio error (\u03b5) Figure 2E.1 \u2013 Simplified equivalent circuit of the current transformer <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex 2F (normative) Determination of the turns ratio error <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Instrument transformers – Additional requirements for current transformers<\/b><\/p>\n |