{"id":78945,"date":"2024-10-17T18:27:24","date_gmt":"2024-10-17T18:27:24","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asce-9780784409572-2009\/"},"modified":"2024-10-24T19:38:37","modified_gmt":"2024-10-24T19:38:37","slug":"asce-9780784409572-2009","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asce\/asce-9780784409572-2009\/","title":{"rendered":"ASCE 9780784409572 2009"},"content":{"rendered":"
This report describes in detail a new rigorous and systematic verification and validation process for computational models for simulating free surface flows.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
14<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Chapter 1 Verification and Validation of Free Surface Flow Models 1.1 Introduction <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 1.2 Modeling of Physical Systems <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 1.3 Free Surface Flow Numerical Model Development <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 1.4 Verification and Validation <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 1.5 Outline of a Systematic Model Verification and Validation Procedure <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 1.6 Other Issues of Importance <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 1.7 Findings, Conclusions, Recommendations and Input Data 1.8 Request for Feedback 1.9 References <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Chapter 2 Terminology and Basic Methodology 2.1 Introduction 2.2 Semantics <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 2.3 Code Verification and Validation: Numerical vs. Conceptual Modeling <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 2.4 Code Confirmation <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 2.5 Benchmarks and Inter-Code Comparisons <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 2.6 Code Certification, Quality Assurance, and Accreditation 2.7 Verification of Calculations 2.8 Estimation of Uncertainty <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 2.9 Grid Convergence vs. Iterative Convergence 2.10 Error Taxonomies <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 2.11 Truncation Error vs. Discretization Error <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 2.12 Calibration and Tuning <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 2.13 Software and Codes 2.14 Code Options <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 2.15 Zonal Verification 2.16 Etymology and Near-Synonyms 2.17 Limitations of Semantic Distinctions <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 2.18 Basic Methodology of Calculation Verification <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 2.19 References <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Chapter 3 Analytical Solutions for Mathematical Verification 3.1 Introduction <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 3.2 Test Case 1: Free-Surface Seiching in a Closed Rectangular Basin with Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 3.3 Test Case 2: Free-Surface Seiching in a Closed Circular Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 3.4 Test Case 3: Tidal Forcing in a Rectangular Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 3.5 Test Case 4: Tidal Forcing in a Rectangular Basin with a Varying Bottom Slope and Linear Bottom Friction <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 3.6 Test Case 5: Wind-Driven Flow in a Closed Rectangular Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 3.7 Test Case 6: Internal-Wave Seiching in a Rectangular Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 3.8 Test Case 7: Density-Driven Flow in a Rectangular Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 3.9 Test Case 8: A Three-Step Procedure to Check Nonlinear Effects from Tidal Circulation in a Square Basin with a Horizontal Bottom <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Chapter 4 Mathematical Verification Using Prescribed or Manufactured Solutions 4.1 Introduction <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 4.2 Method of Prescribed Solution Forcing (PSF) <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 4.3 Method of Manufactured Solution (MMS) <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 4.4 Model Verification Procedure of MMS <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 4.5 Concluding Remarks <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 4.6 References <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Chapter 5 Physical Process Validation 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 5.2 Overview of Tests Cases <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 5.3 Free Overfall Flow Test Case <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 5.4 Delft U-Shaped Channel Flow (Indoor) Test Case <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 5.5 Riprap Test Facility (Outdoor) Test Case <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | 5.6 Flow in a Channel with a Spur Dike Test Case <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 5.7 Flow Around a Submerged Trapezoidal Spur Dike Test Case <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 5.8 Flows Around a Groyne and in Harbor <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | Chapter 6 Application Site Validation 6.1 Introduction <\/td>\n<\/tr>\n | ||||||
268<\/td>\n | 6.2 Overview of Test Cases <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 6.3 Chesapeake Bay Test Case <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | 6.4 San Francisco Bay Test Case <\/td>\n<\/tr>\n | ||||||
310<\/td>\n | 6.5 Apalachicola Bay Test Case <\/td>\n<\/tr>\n | ||||||
327<\/td>\n | 6.6 Meldorf Bay Test Case <\/td>\n<\/tr>\n | ||||||
339<\/td>\n | 6.7 Tokyo Bay Test Case <\/td>\n<\/tr>\n | ||||||
362<\/td>\n | 6.8 Victoria Bendway, Mississippi River, Test Case <\/td>\n<\/tr>\n | ||||||
384<\/td>\n | Chapter 7 A Systematic Model Verification and Validation Procedure 7.1 Introduction <\/td>\n<\/tr>\n | ||||||
386<\/td>\n | 7.2 A Model Verification and Validation Procedure <\/td>\n<\/tr>\n | ||||||
400<\/td>\n | 7.3 Concluding Remarks <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | 7.4 References <\/td>\n<\/tr>\n | ||||||
402<\/td>\n | Chapter 8 Systems Analysis Considerations 8.1 Introduction <\/td>\n<\/tr>\n | ||||||
406<\/td>\n | 8.2 Optimal Design of Field Data Collection <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | 8.3 Reliability Analysis <\/td>\n<\/tr>\n | ||||||
434<\/td>\n | 8.4 Galveston Bay Nowcast\/Forecast System Development and Validation <\/td>\n<\/tr>\n | ||||||
473<\/td>\n | Chapter 9 Findings, Conclusions and Recommendations 9.1 Introduction 9.2 The Need of Model Verification and Validation <\/td>\n<\/tr>\n | ||||||
475<\/td>\n | 9.3 The Methodology of Flow Model Verification and Validation <\/td>\n<\/tr>\n | ||||||
477<\/td>\n | 9.4 The Test Cases Provided 9.5 Recommendations <\/td>\n<\/tr>\n | ||||||
480<\/td>\n | Appendix A: Input Data for Test Cases A.1 Introduction A.2 Input Data Sets for Chapter 5 <\/td>\n<\/tr>\n | ||||||
482<\/td>\n | A.3 Input Data Sets For Chapter 6 <\/td>\n<\/tr>\n | ||||||
489<\/td>\n | Appendix B: Forcing Term Formulations and FORTRAN Codes for Using the Method of Manufactured Solutions B.1 Introduction B.2 Forcing Term Formulations <\/td>\n<\/tr>\n | ||||||
499<\/td>\n | B.3. FORTRAN Codes <\/td>\n<\/tr>\n | ||||||
500<\/td>\n | Index A B C D <\/td>\n<\/tr>\n | ||||||
501<\/td>\n | E F G H L M <\/td>\n<\/tr>\n | ||||||
502<\/td>\n | N O P Q R S T <\/td>\n<\/tr>\n | ||||||
503<\/td>\n | U V W <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Verification and Validation of 3D Free-Surface Flow Models<\/b><\/p>\n |