{"id":82359,"date":"2024-10-18T03:04:24","date_gmt":"2024-10-18T03:04:24","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-399-1980\/"},"modified":"2024-10-24T19:49:55","modified_gmt":"2024-10-24T19:49:55","slug":"ieee-399-1980","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-399-1980\/","title":{"rendered":"IEEE 399 1980"},"content":{"rendered":"

New IEEE Standard – Inactive – Superseded. Superseded by 399-1990. This recommended practice is a reference source for engineers involved in industrial and commercial power systems analysis. It contains a thorough analysis of the power system data required, and the techniques most commonly used in computer-aided analysis, in order to perform specific power system studies of the following: short-circuit, load flow, motorstarting, cable ampacity, stability, harmonic analysis, switching transient, reliability, ground mat, protective coordination, DC auxiliary power system, and power system modeling.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nFig 50 <\/td>\n<\/tr>\n
8<\/td>\nTable <\/td>\n<\/tr>\n
9<\/td>\nTable <\/td>\n<\/tr>\n
12<\/td>\nTable <\/td>\n<\/tr>\n
15<\/td>\nTable <\/td>\n<\/tr>\n
17<\/td>\nTable <\/td>\n<\/tr>\n
19<\/td>\nFig <\/td>\n<\/tr>\n
20<\/td>\n1 Introduction
1.1 General Discussion
1.2 History of Power System Studies <\/td>\n<\/tr>\n
21<\/td>\nand Commercial Power Systems
1.4 Purposes of this Recommended Practice
1.4.1 WhyaStudy
How to Prepare for a Power System Study <\/td>\n<\/tr>\n
22<\/td>\n1.4.3 The Most Important System Studies
1.5 Standard References <\/td>\n<\/tr>\n
23<\/td>\nApplications of Power System Analysis
2.1 Introduction <\/td>\n<\/tr>\n
24<\/td>\n2.2 Load Flow Studies
2.3 Fault and Short-circuit Studies
2.4 Stability Studies
Fig <\/td>\n<\/tr>\n
25<\/td>\n2.5 Motor Starting Studies
2.6 System Transients Studies
2.7 Reliability Analysis
2.8 Power Generation Planning
Fig <\/td>\n<\/tr>\n
27<\/td>\n3 Analytical Procedures
3.1 Introduction <\/td>\n<\/tr>\n
28<\/td>\n3.2 The Fundamentals
3.2.1 Linearity
Linearity <\/td>\n<\/tr>\n
29<\/td>\n3.2.2 Superposition <\/td>\n<\/tr>\n
30<\/td>\nSuperposition
The Thevenin Equivalent <\/td>\n<\/tr>\n
31<\/td>\n3.2.3 The Thevenin Equivalent Circuit <\/td>\n<\/tr>\n
32<\/td>\nCurrent Flow of a Thevenin Equivalent Representation <\/td>\n<\/tr>\n
33<\/td>\n3.2.4 The Sinusoidal Forcing Function
Fault Flow
Fig <\/td>\n<\/tr>\n
34<\/td>\n3.2.5 Phasor Representation
The Sinusoidal Forcing Function <\/td>\n<\/tr>\n
35<\/td>\nThe Phasor Representation
The Fourier Representation
Fig <\/td>\n<\/tr>\n
36<\/td>\n3.2.6 The Fourier Representation
3.2.7 The Single-phase Equivalent Circuit <\/td>\n<\/tr>\n
37<\/td>\nand (c) One-Line Diagram <\/td>\n<\/tr>\n
38<\/td>\n3.2.8 The Symmetrical Component Analysis
and (c) One-Line Diagram <\/td>\n<\/tr>\n
39<\/td>\nThe Symmetrical Component Analysis <\/td>\n<\/tr>\n
41<\/td>\n3.2.9 The Per Unit Method <\/td>\n<\/tr>\n
42<\/td>\n3.3 References and Bibliography
(a) Classical Ohmic Representation (b) Per Unit Representation <\/td>\n<\/tr>\n
43<\/td>\n4 System Modeling
4.1 Introduction
4.2 Modeling <\/td>\n<\/tr>\n
44<\/td>\n4.3 Review of Basics
4.3.1 Passive Elements <\/td>\n<\/tr>\n
45<\/td>\n4.3.2 Active Elements
Susceptance Impedance and Admittance <\/td>\n<\/tr>\n
46<\/td>\nSquirrel Cage Induction Motor Model
Four Expressions for Power Quantities <\/td>\n<\/tr>\n
47<\/td>\nSection of a Typical Industrial Plant Impedance Diagram <\/td>\n<\/tr>\n
48<\/td>\n4.4 Power Network Solution
Fundamental Equations for Translation and Rotation <\/td>\n<\/tr>\n
49<\/td>\nSingle Line Diagram <\/td>\n<\/tr>\n
50<\/td>\nImpedanceDi agram <\/td>\n<\/tr>\n
51<\/td>\n4.5 ImpedanceDiagram <\/td>\n<\/tr>\n
52<\/td>\nFlow Diagram <\/td>\n<\/tr>\n
53<\/td>\nSuggested Format Raw Data Diagram
Fig <\/td>\n<\/tr>\n
54<\/td>\nExtent of the Model
4.6.1 General
4.6.2 Utility Supplied Systems
4.6.3 Isolated Systems <\/td>\n<\/tr>\n
55<\/td>\n4.6.4 Swing Bus
4.7 Models of Branch Elements
4.7.1 Lines
Equivalent Circuit of Short Conductor
Fig <\/td>\n<\/tr>\n
56<\/td>\nEquivalent Circuit <\/td>\n<\/tr>\n
57<\/td>\n4.7.1.1 Long Lines
4.7.1.2 Medium Lines <\/td>\n<\/tr>\n
58<\/td>\n4.7.1.3 Short Lines
4.7.2 Cables
Medium Line Equivalent Circuits (a) Nominal n (b) Nominal T
Fig
Short Line Equivalent Circuit
Fig <\/td>\n<\/tr>\n
59<\/td>\n4.7.3 Determination of Constants
4.7.3.1 Resistance
Comparison of Overhead Lines and Cable Constants
ConductorData <\/td>\n<\/tr>\n
60<\/td>\n4.7.3.2 Inductive Reactance <\/td>\n<\/tr>\n
61<\/td>\n4.7.3.3 Shunt Capacitive Reactance
4.7.4 Reactors
4.7.5 Capacitors <\/td>\n<\/tr>\n
62<\/td>\n4.7.6 Transformers
4.7.6.1 Two-Winding Transformers
Two-Winding Transformer Equivalent Circuits
Fig <\/td>\n<\/tr>\n
63<\/td>\n4.7.6.2 Transformer Taps
Two-Winding Transformer Approximate Equivalent Circuits
Fig <\/td>\n<\/tr>\n
64<\/td>\n4.7.6.3 Three-Winding Transformers
(a) Simplified-Delta (b) Simplified-Wye <\/td>\n<\/tr>\n
65<\/td>\n4.7.6.4 Phase-Shifting Transformers
4.7.6.5 Other Transformer Models
Power System Data Development
4.8.1 Per Unit Representations <\/td>\n<\/tr>\n
66<\/td>\n(b) Flow Diagram <\/td>\n<\/tr>\n
67<\/td>\n4.8.2 Applications Example <\/td>\n<\/tr>\n
68<\/td>\nImpedance Diagram Raw Data
Fig <\/td>\n<\/tr>\n
69<\/td>\nSystem Base Values <\/td>\n<\/tr>\n
70<\/td>\nCableData <\/td>\n<\/tr>\n
71<\/td>\n4.9 Models of Bus Elements
4.9.1 Loads in General <\/td>\n<\/tr>\n
72<\/td>\nImpedance Diagram Per Unit data
Fig <\/td>\n<\/tr>\n
73<\/td>\nEffect of Voltage Variations for Three Types of Loads
Fig <\/td>\n<\/tr>\n
74<\/td>\n4.9.2 Induction Motors
Induction Motor Equivalent Circuit
Fig <\/td>\n<\/tr>\n
75<\/td>\nInduction Motor Torque Versus Speed
Fig
Induction Motor Current Versus Speed
Fig <\/td>\n<\/tr>\n
76<\/td>\n4.9.2.1 Constant kVA Model
Induction Motor Power Factor Versus Speed
Fig <\/td>\n<\/tr>\n
77<\/td>\nModels for Short-circuit Studies
Characteristics
Model of Induction Motor for Short-circuit Study
Fig <\/td>\n<\/tr>\n
78<\/td>\n4.9.2.3 Constant Impedance Model
4.9.3 Synchronous Machines
4.9.3.1 Steady State Models
4.9.3.1.1 Generators <\/td>\n<\/tr>\n
79<\/td>\n4.9.3.1.2 Synchronous Condenser
4.9.3.1.3 Synchronous Motors
4.9.3.2 Short-circuit Models <\/td>\n<\/tr>\n
80<\/td>\n0.8 Lead Power Factor <\/td>\n<\/tr>\n
82<\/td>\nModels of Synchronous Machines for Short-circuit Studies
Fig <\/td>\n<\/tr>\n
83<\/td>\n4.9.3.3 Stability Models
4.9.3.3.1 Classical Model
4.9.3.3.2 The H Constant
General Model for AC Machines in Short-circuit Studies
Fig <\/td>\n<\/tr>\n
84<\/td>\n4.9.3.3.3 Stability Model Variations
4.9.3.4 Exciter Models <\/td>\n<\/tr>\n
85<\/td>\nSaturation Curves
Fig
IEEE Type 1 Excitation System
Fig 40 <\/td>\n<\/tr>\n
86<\/td>\nFig
Lagcircuit <\/td>\n<\/tr>\n
87<\/td>\n4.9.3.5 Prime Movers and Governor Models
4.10 Miscellaneous Bus Elements Models
4.10.1 Lighting and Electric Heating
4.10.2 Electric Furnaces
Leadcircuit
Fig <\/td>\n<\/tr>\n
88<\/td>\n4.10.3 ShuqCapacitors
4.10.4 Shunt Reactors
4.11 References <\/td>\n<\/tr>\n
90<\/td>\n5 Load Flow Studies
5.1 Introduction <\/td>\n<\/tr>\n
91<\/td>\n5.2 System Representation <\/td>\n<\/tr>\n
92<\/td>\nGenerators Connected to their Bus
Fig
Connection of Buses
Fig
Auxiliary Bus
Fig <\/td>\n<\/tr>\n
93<\/td>\n5.3 System Data Organization
5.4 Load Flow Study Example
5.4.1 General
5.4.2 Input Requirements <\/td>\n<\/tr>\n
94<\/td>\nOne-Line Connection Diagram
Fig <\/td>\n<\/tr>\n
95<\/td>\nFig
ImpedanceDi agram <\/td>\n<\/tr>\n
96<\/td>\nInputDataSheet Form1
Fig <\/td>\n<\/tr>\n
98<\/td>\nInput Data Sheet Form
Fig <\/td>\n<\/tr>\n
99<\/td>\nInput Data Sheet Form 3
Fig <\/td>\n<\/tr>\n
100<\/td>\n5.4.3 Special Data
Input Card Preparation <\/td>\n<\/tr>\n
101<\/td>\nLoad Flow Results <\/td>\n<\/tr>\n
102<\/td>\nPrinted Computer Output
Fig
Fig <\/td>\n<\/tr>\n
103<\/td>\nPrinted Computer Output
Fig <\/td>\n<\/tr>\n
104<\/td>\nLoad Flow Analysis
Fig <\/td>\n<\/tr>\n
105<\/td>\nLoad Flow Output Presentation
Load Flow Analysis
Fig <\/td>\n<\/tr>\n
106<\/td>\nTypical Industrial Plant Electric System
Fig
Fig <\/td>\n<\/tr>\n
107<\/td>\n5.10 Conclusions
Fig <\/td>\n<\/tr>\n
108<\/td>\n6 Short-circuit Studies
6.1 Introduction
Short-circuit Study Procedure
Preparing a One-Line Diagram
Fig <\/td>\n<\/tr>\n
109<\/td>\n6.2.2 Determining Depth and Accuracy of a Study
Calculating Impedance Values
Fig <\/td>\n<\/tr>\n
110<\/td>\nDeveloping an Impedance Diagram
Converting Impedances to a Common Base
Interpretation and Application of the Study
Short-circuit Studies <\/td>\n<\/tr>\n
111<\/td>\nUse of the Computer <\/td>\n<\/tr>\n
112<\/td>\nShort-circuit Study Example <\/td>\n<\/tr>\n
114<\/td>\narenotKnown
Duty Calculations <\/td>\n<\/tr>\n
115<\/td>\nStudy Example <\/td>\n<\/tr>\n
116<\/td>\nImpedance Diagram for Short-circuit Study Example
Fig <\/td>\n<\/tr>\n
118<\/td>\nDigital Computer Program Output Records <\/td>\n<\/tr>\n
119<\/td>\nInput Data Paper Tape Medium Voltage Interrupting Calculation <\/td>\n<\/tr>\n
120<\/td>\nProgram Listing of Input Data from Data Tape
Fig <\/td>\n<\/tr>\n
121<\/td>\nInterrupting Case Short-circuit Study <\/td>\n<\/tr>\n
122<\/td>\nBuses Medium Voltage Interrupting Case Short-circuit Study <\/td>\n<\/tr>\n
123<\/td>\n6.6 References
Sample Summary of Results for Example Short-circuit Study
Table <\/td>\n<\/tr>\n
124<\/td>\n7 Transient Stability Studies
7.1 Introduction
7.2 Stability Fundamentals
Definition of Stability
7.2.2 Steady-State Stability
Simplified Two-Machine Power System <\/td>\n<\/tr>\n
125<\/td>\n7.2.3 Transient Stability <\/td>\n<\/tr>\n
126<\/td>\nMachines in Steady State <\/td>\n<\/tr>\n
127<\/td>\n7.2.4 Two-Machine Systems
7.2.5 Multimachine Systems
7.3 Problems Caused by Instability <\/td>\n<\/tr>\n
128<\/td>\nSystem Disturbances that can Cause Instability
Solutions to Stability Problems
7.5.1 System Design <\/td>\n<\/tr>\n
129<\/td>\nDesign and Selection of Rotating Equipment
7.5.3 System Protection
Voltage Regulator and Exciter Characteristics
Transient Stability Studies
7.6.1 History <\/td>\n<\/tr>\n
130<\/td>\nHow Stability Programs Work
7.6.3 Simulation of the System <\/td>\n<\/tr>\n
131<\/td>\nSimulation of Disturbances
Data Requirements for Stability Studies <\/td>\n<\/tr>\n
132<\/td>\nStability Program Output <\/td>\n<\/tr>\n
133<\/td>\nInterpreting Results-Swing Curves
7.7 Stability Studies on a Typical System <\/td>\n<\/tr>\n
134<\/td>\nSystem in Fig <\/td>\n<\/tr>\n
135<\/td>\nFigs62and64 <\/td>\n<\/tr>\n
136<\/td>\nShowninFig63 <\/td>\n<\/tr>\n
137<\/td>\nwith On-Site Generation <\/td>\n<\/tr>\n
138<\/td>\n7.8 References <\/td>\n<\/tr>\n
139<\/td>\nMotor Starting Studies
8.1 Introduction
Need for Motor Starting Studies
8.2.1 Problems Revealed
8.2.2 Voltage Dips <\/td>\n<\/tr>\n
140<\/td>\n8.2.3 Weak Source Generation
Special Torque Requirements
Exciter Regulator Systems <\/td>\n<\/tr>\n
141<\/td>\n8.3 Recommendations
8.3.1 Voltage Dips <\/td>\n<\/tr>\n
142<\/td>\nTypical Wound Rotor Motor Speed-Torque Characteristics <\/td>\n<\/tr>\n
143<\/td>\nAnalyzing Starting Requirements
Types of Studies
8.4.1 The Voltage Drop Snapshot
The Detailed Voltage Profile
8.4.3 The Motor Torque and Acceleration Time Analysis <\/td>\n<\/tr>\n
144<\/td>\n8.4.4 Adaptations
8.5 Data Requirements
8.5.1 Basic Information
Typical Motor and Load Speed-Torque Characteristics <\/td>\n<\/tr>\n
145<\/td>\n8.5.2 Simplifying Assumptions
Solution Procedures and Examples
Simplified Equivalent Circuit for a Motor on Starting <\/td>\n<\/tr>\n
146<\/td>\nThe Mathematical Relationships
Simplified Impedance Diagram <\/td>\n<\/tr>\n
147<\/td>\nTypical One-Line Diagram <\/td>\n<\/tr>\n
148<\/td>\n8.6.2 Other Factors
Impedance Diagram for System in Fig <\/td>\n<\/tr>\n
149<\/td>\nofGenerator <\/td>\n<\/tr>\n
150<\/td>\nSimplified Representation of Generator Exciter\/Regulator System <\/td>\n<\/tr>\n
151<\/td>\nAuto-Transformer-Line Starting Current
Table <\/td>\n<\/tr>\n
152<\/td>\n8.6.3 The Simple Voltage Drop Determination <\/td>\n<\/tr>\n
153<\/td>\nLoad Flow Computer Output – Steady State <\/td>\n<\/tr>\n
154<\/td>\nLoad Flow Computer Output – Voltage Dip on Motor Starting <\/td>\n<\/tr>\n
155<\/td>\nTime-Dependent Bus Voltages
During Motor Starting <\/td>\n<\/tr>\n
156<\/td>\nTypical Output – Generator Motor Starting Program
Typical Output Generator Motor Starting Program <\/td>\n<\/tr>\n
157<\/td>\nTypical Output Plot of Generator Voltage Dip
Typical Output Plot of Motor Voltage Dip <\/td>\n<\/tr>\n
158<\/td>\n8.6.5 The Speed-Torque and Motor Accelerating Time Analysis
Models for Use in Computer Programs
Speed-Torque Calculations <\/td>\n<\/tr>\n
159<\/td>\nTypical Motor Speed-Current Characteristic
Interval Defined by a Speed Change <\/td>\n<\/tr>\n
160<\/td>\nTimeProgram <\/td>\n<\/tr>\n
163<\/td>\nHarmonic Analysis Studies
9.1 Introduction
9.2 History <\/td>\n<\/tr>\n
164<\/td>\n9.3 General Theory
What are Harmonics?
6.Phase 6-Pulse Rectifier
6.Phase 6-Pulse Rectifier <\/td>\n<\/tr>\n
165<\/td>\n9.3.2 Resonance
SeriesCircuit
Impedance Versus Frequency <\/td>\n<\/tr>\n
166<\/td>\n9.4 Modeling
Parallelcircuit
Impedance Versus Frequency <\/td>\n<\/tr>\n
167<\/td>\nTypical Thyristor Drive Characteristics <\/td>\n<\/tr>\n
168<\/td>\nSolutions to Harmonic Problems <\/td>\n<\/tr>\n
169<\/td>\nNo 1 Scheme for Adequate Filtering
No 2 Scheme for Adequate Filtering
No 3 Scheme for Adequate Filtering <\/td>\n<\/tr>\n
170<\/td>\n6-Phase Rectifier Transformers
24-Phase System <\/td>\n<\/tr>\n
171<\/td>\nPartial One-Line Diagram <\/td>\n<\/tr>\n
172<\/td>\nFirst Computer Solution: Without Filters
Table <\/td>\n<\/tr>\n
173<\/td>\nSecond Computer Solution: With Filters
Table <\/td>\n<\/tr>\n
174<\/td>\n9.6 When is a Harmonic Study Required? <\/td>\n<\/tr>\n
175<\/td>\n9.7 References <\/td>\n<\/tr>\n
176<\/td>\nSwitching Transient Studies
10
10.1 Introduction
Basic Concept of Switching Transients <\/td>\n<\/tr>\n
177<\/td>\nControl of Switching Transients
Methods of Analysis <\/td>\n<\/tr>\n
178<\/td>\n10.5 Analysis Aids <\/td>\n<\/tr>\n
179<\/td>\nData Required for a Switching Transient Study <\/td>\n<\/tr>\n
180<\/td>\nSwitching Transient Problem Areas <\/td>\n<\/tr>\n
181<\/td>\nSwitching Transient Study Objectives
Switching Transient Study via Transient Network Analyzer (TNA) <\/td>\n<\/tr>\n
182<\/td>\n10.9.1 Model Components <\/td>\n<\/tr>\n
183<\/td>\n10.9.2 Model Scale Factors
10.9.3 Accuracy <\/td>\n<\/tr>\n
184<\/td>\n10.9.4 Study Procedures
Example of TNA Study Case Documentation <\/td>\n<\/tr>\n
185<\/td>\nSwitching Transient Study <\/td>\n<\/tr>\n
186<\/td>\nCase Sheet of Fig <\/td>\n<\/tr>\n
187<\/td>\n10.10 Field Measurements
10.10.1 Signal Derivation
Signal Circuits Terminations and Grounding <\/td>\n<\/tr>\n
188<\/td>\n10.10.3 Transient Measurement\/Monitoring Instrumentation <\/td>\n<\/tr>\n
189<\/td>\nObjectives of Field Measurements <\/td>\n<\/tr>\n
190<\/td>\nReliability Studies
11.1 Introduction
11.2 Definitions <\/td>\n<\/tr>\n
192<\/td>\nSystem Reliability Indexes
11.4 Data Needed for System Reliability Evaluations
Method for System Reliability Evaluation <\/td>\n<\/tr>\n
193<\/td>\nService Interruption Definition
Failure Modes and Effects Analysis <\/td>\n<\/tr>\n
194<\/td>\nComputation of Quantitative Reliability Indexes
Interruptions Associated with Forced Outages Only <\/td>\n<\/tr>\n
195<\/td>\n11.6 References <\/td>\n<\/tr>\n
196<\/td>\n12 Grounding Mat Studies
12.1 Introduction
The Human Factor <\/td>\n<\/tr>\n
198<\/td>\nTouchPotenti al
Fig
Step Potential
Fig <\/td>\n<\/tr>\n
199<\/td>\nThe Physical Circuit
12.3.1 Ground Resistivity <\/td>\n<\/tr>\n
200<\/td>\nFault Current-Magnitude and Duration
Representative Values of Soil Resistivities
Table
Effect of Asymmetrical ac Currents <\/td>\n<\/tr>\n
201<\/td>\nFault Current-The Role of Grid Resistance <\/td>\n<\/tr>\n
202<\/td>\n12.3.4 GridGeometry <\/td>\n<\/tr>\n
204<\/td>\nPoint a Due to a Single Conductor <\/td>\n<\/tr>\n
205<\/td>\n12.4 The Computer in Action <\/td>\n<\/tr>\n
206<\/td>\nExperimental Grids Showing Various (Mesh) Arrangements
Fig <\/td>\n<\/tr>\n
207<\/td>\nInput Data Requirements <\/td>\n<\/tr>\n
208<\/td>\nSoil and System Data <\/td>\n<\/tr>\n
209<\/td>\nPotentials as Identified by Computer Analysis <\/td>\n<\/tr>\n
210<\/td>\nMeshes with Hazardous Touch Potentials <\/td>\n<\/tr>\n
211<\/td>\nHazardous Touch Potentials <\/td>\n<\/tr>\n
212<\/td>\nCritical Step and Touch Potentials Near Grid Corners <\/td>\n<\/tr>\n
213<\/td>\nTypical Computer Output
12.7 Conclusion
12.8 References <\/td>\n<\/tr>\n
215<\/td>\nGridpotentials <\/td>\n<\/tr>\n
216<\/td>\nComputer Services
13.1 Introduction
13.2 Computer Systems
13.2.1 In-House Systems <\/td>\n<\/tr>\n
217<\/td>\nCommercial Computing Services
Types of Computing Service <\/td>\n<\/tr>\n
218<\/td>\nUse of Computing Services <\/td>\n<\/tr>\n
219<\/td>\nAvailability of Computing Services <\/td>\n<\/tr>\n
220<\/td>\nIndex <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Recommended Practice for Power System Analysis (IEEE Brown Book)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1980<\/td>\n223<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":82360,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-82359","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/82359","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/82360"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=82359"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=82359"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=82359"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}