{"id":82359,"date":"2024-10-18T03:04:24","date_gmt":"2024-10-18T03:04:24","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-399-1980\/"},"modified":"2024-10-24T19:49:55","modified_gmt":"2024-10-24T19:49:55","slug":"ieee-399-1980","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-399-1980\/","title":{"rendered":"IEEE 399 1980"},"content":{"rendered":"
New IEEE Standard – Inactive – Superseded. Superseded by 399-1990. This recommended practice is a reference source for engineers involved in industrial and commercial power systems analysis. It contains a thorough analysis of the power system data required, and the techniques most commonly used in computer-aided analysis, in order to perform specific power system studies of the following: short-circuit, load flow, motorstarting, cable ampacity, stability, harmonic analysis, switching transient, reliability, ground mat, protective coordination, DC auxiliary power system, and power system modeling.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | Fig 50 <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Table <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 1 Introduction 1.1 General Discussion 1.2 History of Power System Studies <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | and Commercial Power Systems 1.4 Purposes of this Recommended Practice 1.4.1 WhyaStudy How to Prepare for a Power System Study <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 1.4.3 The Most Important System Studies 1.5 Standard References <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Applications of Power System Analysis 2.1 Introduction <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 2.2 Load Flow Studies 2.3 Fault and Short-circuit Studies 2.4 Stability Studies Fig <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 2.5 Motor Starting Studies 2.6 System Transients Studies 2.7 Reliability Analysis 2.8 Power Generation Planning Fig <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 3 Analytical Procedures 3.1 Introduction <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 3.2 The Fundamentals 3.2.1 Linearity Linearity <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 3.2.2 Superposition <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Superposition The Thevenin Equivalent <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 3.2.3 The Thevenin Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Current Flow of a Thevenin Equivalent Representation <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 3.2.4 The Sinusoidal Forcing Function Fault Flow Fig <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 3.2.5 Phasor Representation The Sinusoidal Forcing Function <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | The Phasor Representation The Fourier Representation Fig <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 3.2.6 The Fourier Representation 3.2.7 The Single-phase Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | and (c) One-Line Diagram <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 3.2.8 The Symmetrical Component Analysis and (c) One-Line Diagram <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | The Symmetrical Component Analysis <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 3.2.9 The Per Unit Method <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 3.3 References and Bibliography (a) Classical Ohmic Representation (b) Per Unit Representation <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 4 System Modeling 4.1 Introduction 4.2 Modeling <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 4.3 Review of Basics 4.3.1 Passive Elements <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 4.3.2 Active Elements Susceptance Impedance and Admittance <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Squirrel Cage Induction Motor Model Four Expressions for Power Quantities <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Section of a Typical Industrial Plant Impedance Diagram <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 4.4 Power Network Solution Fundamental Equations for Translation and Rotation <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Single Line Diagram <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | ImpedanceDi agram <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 4.5 ImpedanceDiagram <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Flow Diagram <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Suggested Format Raw Data Diagram Fig <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Extent of the Model 4.6.1 General 4.6.2 Utility Supplied Systems 4.6.3 Isolated Systems <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 4.6.4 Swing Bus 4.7 Models of Branch Elements 4.7.1 Lines Equivalent Circuit of Short Conductor Fig <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Equivalent Circuit <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 4.7.1.1 Long Lines 4.7.1.2 Medium Lines <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 4.7.1.3 Short Lines 4.7.2 Cables Medium Line Equivalent Circuits (a) Nominal n (b) Nominal T Fig Short Line Equivalent Circuit Fig <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 4.7.3 Determination of Constants 4.7.3.1 Resistance Comparison of Overhead Lines and Cable Constants ConductorData <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 4.7.3.2 Inductive Reactance <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 4.7.3.3 Shunt Capacitive Reactance 4.7.4 Reactors 4.7.5 Capacitors <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 4.7.6 Transformers 4.7.6.1 Two-Winding Transformers Two-Winding Transformer Equivalent Circuits Fig <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 4.7.6.2 Transformer Taps Two-Winding Transformer Approximate Equivalent Circuits Fig <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 4.7.6.3 Three-Winding Transformers (a) Simplified-Delta (b) Simplified-Wye <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 4.7.6.4 Phase-Shifting Transformers 4.7.6.5 Other Transformer Models Power System Data Development 4.8.1 Per Unit Representations <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | (b) Flow Diagram <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 4.8.2 Applications Example <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Impedance Diagram Raw Data Fig <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | System Base Values <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | CableData <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 4.9 Models of Bus Elements 4.9.1 Loads in General <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Impedance Diagram Per Unit data Fig <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Effect of Voltage Variations for Three Types of Loads Fig <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 4.9.2 Induction Motors Induction Motor Equivalent Circuit Fig <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Induction Motor Torque Versus Speed Fig Induction Motor Current Versus Speed Fig <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 4.9.2.1 Constant kVA Model Induction Motor Power Factor Versus Speed Fig <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Models for Short-circuit Studies Characteristics Model of Induction Motor for Short-circuit Study Fig <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 4.9.2.3 Constant Impedance Model 4.9.3 Synchronous Machines 4.9.3.1 Steady State Models 4.9.3.1.1 Generators <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 4.9.3.1.2 Synchronous Condenser 4.9.3.1.3 Synchronous Motors 4.9.3.2 Short-circuit Models <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 0.8 Lead Power Factor <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Models of Synchronous Machines for Short-circuit Studies Fig <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 4.9.3.3 Stability Models 4.9.3.3.1 Classical Model 4.9.3.3.2 The H Constant General Model for AC Machines in Short-circuit Studies Fig <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 4.9.3.3.3 Stability Model Variations 4.9.3.4 Exciter Models <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Saturation Curves Fig IEEE Type 1 Excitation System Fig 40 <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Fig Lagcircuit <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 4.9.3.5 Prime Movers and Governor Models 4.10 Miscellaneous Bus Elements Models 4.10.1 Lighting and Electric Heating 4.10.2 Electric Furnaces Leadcircuit Fig <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 4.10.3 ShuqCapacitors 4.10.4 Shunt Reactors 4.11 References <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 5 Load Flow Studies 5.1 Introduction <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 5.2 System Representation <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Generators Connected to their Bus Fig Connection of Buses Fig Auxiliary Bus Fig <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 5.3 System Data Organization 5.4 Load Flow Study Example 5.4.1 General 5.4.2 Input Requirements <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | One-Line Connection Diagram Fig <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Fig ImpedanceDi agram <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | InputDataSheet Form1 Fig <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Input Data Sheet Form Fig <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Input Data Sheet Form 3 Fig <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 5.4.3 Special Data Input Card Preparation <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Load Flow Results <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Printed Computer Output Fig Fig <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Printed Computer Output Fig <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Load Flow Analysis Fig <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Load Flow Output Presentation Load Flow Analysis Fig <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Typical Industrial Plant Electric System Fig Fig <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 5.10 Conclusions Fig <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 6 Short-circuit Studies 6.1 Introduction Short-circuit Study Procedure Preparing a One-Line Diagram Fig <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 6.2.2 Determining Depth and Accuracy of a Study Calculating Impedance Values Fig <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Developing an Impedance Diagram Converting Impedances to a Common Base Interpretation and Application of the Study Short-circuit Studies <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Use of the Computer <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Short-circuit Study Example <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | arenotKnown Duty Calculations <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Study Example <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Impedance Diagram for Short-circuit Study Example Fig <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Digital Computer Program Output Records <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Input Data Paper Tape Medium Voltage Interrupting Calculation <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Program Listing of Input Data from Data Tape Fig <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Interrupting Case Short-circuit Study <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Buses Medium Voltage Interrupting Case Short-circuit Study <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 6.6 References Sample Summary of Results for Example Short-circuit Study Table <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 7 Transient Stability Studies 7.1 Introduction 7.2 Stability Fundamentals Definition of Stability 7.2.2 Steady-State Stability Simplified Two-Machine Power System <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 7.2.3 Transient Stability <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Machines in Steady State <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 7.2.4 Two-Machine Systems 7.2.5 Multimachine Systems 7.3 Problems Caused by Instability <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | System Disturbances that can Cause Instability Solutions to Stability Problems 7.5.1 System Design <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Design and Selection of Rotating Equipment 7.5.3 System Protection Voltage Regulator and Exciter Characteristics Transient Stability Studies 7.6.1 History <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | How Stability Programs Work 7.6.3 Simulation of the System <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Simulation of Disturbances Data Requirements for Stability Studies <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Stability Program Output <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Interpreting Results-Swing Curves 7.7 Stability Studies on a Typical System <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | System in Fig <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figs62and64 <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | ShowninFig63 <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | with On-Site Generation <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 7.8 References <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Motor Starting Studies 8.1 Introduction Need for Motor Starting Studies 8.2.1 Problems Revealed 8.2.2 Voltage Dips <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 8.2.3 Weak Source Generation Special Torque Requirements Exciter Regulator Systems <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 8.3 Recommendations 8.3.1 Voltage Dips <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Typical Wound Rotor Motor Speed-Torque Characteristics <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Analyzing Starting Requirements Types of Studies 8.4.1 The Voltage Drop Snapshot The Detailed Voltage Profile 8.4.3 The Motor Torque and Acceleration Time Analysis <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 8.4.4 Adaptations 8.5 Data Requirements 8.5.1 Basic Information Typical Motor and Load Speed-Torque Characteristics <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 8.5.2 Simplifying Assumptions Solution Procedures and Examples Simplified Equivalent Circuit for a Motor on Starting <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | The Mathematical Relationships Simplified Impedance Diagram <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Typical One-Line Diagram <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 8.6.2 Other Factors Impedance Diagram for System in Fig <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | ofGenerator <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Simplified Representation of Generator Exciter\/Regulator System <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Auto-Transformer-Line Starting Current Table <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 8.6.3 The Simple Voltage Drop Determination <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Load Flow Computer Output – Steady State <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Load Flow Computer Output – Voltage Dip on Motor Starting <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Time-Dependent Bus Voltages During Motor Starting <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Typical Output – Generator Motor Starting Program Typical Output Generator Motor Starting Program <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Typical Output Plot of Generator Voltage Dip Typical Output Plot of Motor Voltage Dip <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 8.6.5 The Speed-Torque and Motor Accelerating Time Analysis Models for Use in Computer Programs Speed-Torque Calculations <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | Typical Motor Speed-Current Characteristic Interval Defined by a Speed Change <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | TimeProgram <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Harmonic Analysis Studies 9.1 Introduction 9.2 History <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 9.3 General Theory What are Harmonics? 6.Phase 6-Pulse Rectifier 6.Phase 6-Pulse Rectifier <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 9.3.2 Resonance SeriesCircuit Impedance Versus Frequency <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 9.4 Modeling Parallelcircuit Impedance Versus Frequency <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Typical Thyristor Drive Characteristics <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Solutions to Harmonic Problems <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | No 1 Scheme for Adequate Filtering No 2 Scheme for Adequate Filtering No 3 Scheme for Adequate Filtering <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 6-Phase Rectifier Transformers 24-Phase System <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Partial One-Line Diagram <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | First Computer Solution: Without Filters Table <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Second Computer Solution: With Filters Table <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 9.6 When is a Harmonic Study Required? <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 9.7 References <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Switching Transient Studies 10 10.1 Introduction Basic Concept of Switching Transients <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Control of Switching Transients Methods of Analysis <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 10.5 Analysis Aids <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | Data Required for a Switching Transient Study <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Switching Transient Problem Areas <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Switching Transient Study Objectives Switching Transient Study via Transient Network Analyzer (TNA) <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 10.9.1 Model Components <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 10.9.2 Model Scale Factors 10.9.3 Accuracy <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 10.9.4 Study Procedures Example of TNA Study Case Documentation <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | Switching Transient Study <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Case Sheet of Fig <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 10.10 Field Measurements 10.10.1 Signal Derivation Signal Circuits Terminations and Grounding <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 10.10.3 Transient Measurement\/Monitoring Instrumentation <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | Objectives of Field Measurements <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Reliability Studies 11.1 Introduction 11.2 Definitions <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | System Reliability Indexes 11.4 Data Needed for System Reliability Evaluations Method for System Reliability Evaluation <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Service Interruption Definition Failure Modes and Effects Analysis <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Computation of Quantitative Reliability Indexes Interruptions Associated with Forced Outages Only <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 11.6 References <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 12 Grounding Mat Studies 12.1 Introduction The Human Factor <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | TouchPotenti al Fig Step Potential Fig <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | The Physical Circuit 12.3.1 Ground Resistivity <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Fault Current-Magnitude and Duration Representative Values of Soil Resistivities Table Effect of Asymmetrical ac Currents <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | Fault Current-The Role of Grid Resistance <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 12.3.4 GridGeometry <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Point a Due to a Single Conductor <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 12.4 The Computer in Action <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Experimental Grids Showing Various (Mesh) Arrangements Fig <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | Input Data Requirements <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Soil and System Data <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Potentials as Identified by Computer Analysis <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Meshes with Hazardous Touch Potentials <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | Hazardous Touch Potentials <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | Critical Step and Touch Potentials Near Grid Corners <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Typical Computer Output 12.7 Conclusion 12.8 References <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Gridpotentials <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Computer Services 13.1 Introduction 13.2 Computer Systems 13.2.1 In-House Systems <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Commercial Computing Services Types of Computing Service <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Use of Computing Services <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Availability of Computing Services <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | Index <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Recommended Practice for Power System Analysis (IEEE Brown Book)<\/b><\/p>\n |